/* * UFC-crypt: ultra fast crypt(3) implementation * * Copyright (C) 1991, Michael Glad, email: glad@daimi.aau.dk * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * @(#)crypt_util.c 2.2 10/04/91 * * Support routines * */ #ifdef DEBUG #include #endif /* #include "patchlevel.h" */ /* #ifdef SYSV */ #define bzero(addr, cnt) memset(addr, 0, cnt) #define bcopy(from, to, len) memcpy(to, from, len) /* #endif */ /* Permutation done once on the 56 bit key derived from the original 8 byte ASCII key. */ static unsigned long pc1[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; /* How much to rotate each 28 bit half of the pc1 permutated 56 bit key before using pc2 to give the i' key */ static unsigned long totrot[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; /* Permutation giving the key of the i' DES round */ static unsigned long pc2[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* Reference copy of the expansion table which selects bits from the 32 bit intermediate result. */ static unsigned long eref[48] = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; static unsigned long disturbed_e[48]; static unsigned long e_inverse[64]; /* Permutation done on the result of sbox lookups */ static unsigned long perm32[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; /* The sboxes */ static unsigned long sbox[8][4][16]= { { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } }, { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } }, { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } }, { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } }, { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } }, { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } }, { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } }, { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } } }; #ifdef notdef /* This is the initial permutation matrix -- we have no use for it, but it is needed if you will develop this module into a general DES package. */ static unsigned char inital_perm[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; #endif /* Final permutation matrix -- not used directly */ static unsigned char final_perm[64] = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; /* The 16 DES keys in BITMASK format */ unsigned long keytab[16][2]; #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') /* Macro to set a bit (0..23) */ #define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) ) /* sb arrays: Workhorses of the inner loop of the DES implementation. They do sbox lookup, shifting of this value, 32 bit permutation and E permutation for the next round. Kept in 'BITMASK' format. */ unsigned long sb0[8192],sb1[8192],sb2[8192],sb3[8192]; static unsigned long *sb[4] = {sb0,sb1,sb2,sb3}; /* eperm32tab: do 32 bit permutation and E selection The first index is the byte number in the 32 bit value to be permuted - second - is the value of this byte - third - selects the two 32 bit values The table is used and generated internally in init_des to speed it up */ static unsigned long eperm32tab[4][256][2]; /* mk_keytab_table: fast way of generating keytab from ASCII key The first index is the byte number in the 8 byte ASCII key - second - - - current DES round i.e. the key number - third - distinguishes between the two 24 bit halfs of the selected key - fourth - selects the 7 bits actually used of each byte The table is kept in the format generated by the BITMASK macro */ static unsigned long mk_keytab_table[8][16][2][128]; /* efp: undo an extra e selection and do final permutation giving the DES result. Invoked 6 bit a time on two 48 bit values giving two 32 bit longs. */ static unsigned long efp[16][64][2]; static unsigned char bytemask[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static unsigned long longmask[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; #ifdef DEBUG /* For debugging */ void pr_bits(a,n) unsigned long *a; unsigned long n; { unsigned long i,j,t,tmp; n/=8; for(i=0; i>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; /* Generate the mk_keytab_table once in a program execution */ void init_des() { unsigned long tbl_long,bit_within_long,comes_from_bit; unsigned long bit,sg,j; unsigned long bit_within_byte,key_byte,byte_value; unsigned long round,mask; bzero((char*)mk_keytab_table,sizeof mk_keytab_table); for(round=0; round<16; round++) for(bit=0; bit<48; bit++) { tbl_long = bit / 24; bit_within_long = bit % 24; /* from which bit in the key halves does it origin? */ comes_from_bit = pc2[bit] - 1; /* undo the rotation done before pc2 */ if(comes_from_bit>=28) comes_from_bit = 28 + (comes_from_bit + totrot[round]) % 28; else comes_from_bit = (comes_from_bit + totrot[round]) % 28; /* undo the initial key half forming permutation */ comes_from_bit = pc1[comes_from_bit] - 1; /* Now 'comes_from_bit' is the correct number (0..55) of the keybit from which the bit being traced in key 'round' comes from */ key_byte = comes_from_bit / 8; bit_within_byte = (comes_from_bit % 8)+1; mask = bytemask[bit_within_byte]; for(byte_value=0; byte_value<128; byte_value++) if(byte_value & mask) mk_keytab_table[key_byte][round][tbl_long][byte_value] |= BITMASK(bit_within_long); } /* Now generate the table used to do an combined 32 bit permutation and e expansion We use it because we have to permute 16384 32 bit longs into 48 bit in order to initialize sb. Looping 48 rounds per permutation becomes just too slow... */ bzero((char*)eperm32tab,sizeof eperm32tab); for(bit=0; bit<48; bit++) { unsigned long mask1,comes_from; comes_from = perm32[eref[bit]-1]-1; mask1 = bytemask[comes_from % 8]; for(j=256; j--;) if(j & mask1) eperm32tab[comes_from/8][j][bit/24] |= BITMASK(bit % 24); } /* Create the sb tables: For each 12 bit segment of an 48 bit intermediate result, the sb table precomputes the two 4 bit values of the sbox lookups done with the two 6 bit halves, shifts them to their proper place, sends them through perm32 and finally E expands them so that they are ready for the next DES round. The value looked up is to be xored onto the two 48 bit right halves. */ for(sg=0; sg<4; sg++) { unsigned long j1,j2; unsigned long s1,s2; for(j1=0; j1<64; j1++) { s1 = s_lookup(2*sg,j1); for(j2=0; j2<64; j2++) { unsigned long to_permute,inx; s2 = s_lookup(2*sg+1,j2); to_permute = ((s1<<4) | s2) << (24-8*sg); inx = ((j1<<6) | j2) << 1; sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; } } } initialized++; } /* Process the elements of the sb table permuting the bits swapped in the expansion by the current salt. */ void shuffle_sb(k, saltbits) unsigned long *k, saltbits; { int j, x; for(j=4096; j--;) { x = (k[0] ^ k[1]) & saltbits; *k++ ^= x; *k++ ^= x; } } /* Setup the unit for a new salt Hopefully we'll not see a new salt in each crypt call. */ static unsigned char current_salt[3]="&&"; /* invalid value */ static unsigned long oldsaltbits = 0; void setup_salt(s) char *s; { unsigned long i,j,saltbits; if(!initialized) init_des(); if(s[0]==current_salt[0] && s[1]==current_salt[1]) return; current_salt[0]=s[0]; current_salt[1]=s[1]; /* This is the only crypt change to DES: entries are swapped in the expansion table according to the bits set in the salt. */ saltbits=0; bcopy((char*)eref,(char*)disturbed_e,sizeof eref); for(i=0; i<2; i++) { long c=ascii_to_bin(s[i]); if(c<0 || c>63) c=0; for(j=0; j<6; j++) if((c>>j) & 0x1) { disturbed_e[6*i+j ]=eref[6*i+j+24]; disturbed_e[6*i+j+24]=eref[6*i+j ]; saltbits |= BITMASK(6*i+j); } } /* Permute the sb table values to reflect the changed e selection table */ shuffle_sb(sb0, oldsaltbits ^ saltbits); shuffle_sb(sb1, oldsaltbits ^ saltbits); shuffle_sb(sb2, oldsaltbits ^ saltbits); shuffle_sb(sb3, oldsaltbits ^ saltbits); oldsaltbits = saltbits; /* Create an inverse matrix for disturbed_e telling where to plug out bits if undoing disturbed_e */ for(i=48; i--;) { e_inverse[disturbed_e[i]-1 ] = i; e_inverse[disturbed_e[i]-1+32] = i+48; } /* create efp: the matrix used to undo the E expansion and effect final permutation */ bzero((char*)efp,sizeof efp); for(i=0; i<64; i++) { unsigned long o_bit,o_long; unsigned long word_value,mask1,mask2,comes_from_f_bit,comes_from_e_bit; unsigned long comes_from_word,bit_within_word; /* See where bit i belongs in the two 32 bit long's */ o_long = i / 32; /* 0..1 */ o_bit = i % 32; /* 0..31 */ /* And find a bit in the e permutated value setting this bit. Note: the e selection may have selected the same bit several times. By the initialization of e_inverse, we only look for one specific instance. */ comes_from_f_bit = final_perm[i]-1; /* 0..63 */ comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ comes_from_word = comes_from_e_bit / 6; /* 0..15 */ bit_within_word = comes_from_e_bit % 6; /* 0..5 */ mask1 = longmask[bit_within_word+26]; mask2 = longmask[o_bit]; for(word_value=64; word_value--;) if(word_value & mask1) efp[comes_from_word][word_value][o_long] |= mask2; } } /* Generate the key table before running the 25 DES rounds */ void mk_keytab(key) char *key; { unsigned long i,j; unsigned long *k,*mkt; char t; bzero((char*)keytab, sizeof keytab); mkt = &mk_keytab_table[0][0][0][0]; for(i=0; (t=(*key++) & 0x7f) && i<8; i++) for(j=0,k = &keytab[0][0]; j<16; j++) { *k++ |= mkt[t]; mkt += 128; *k++ |= mkt[t]; mkt += 128; } for(; i<8; i++) for(j=0,k = &keytab[0][0]; j<16; j++) { *k++ |= mkt[0]; mkt += 128; *k++ |= mkt[0]; mkt += 128; } } /* Do final permutations and convert to ASCII */ char *output_conversion(l1,l2,r1,r2,salt) unsigned long l1,l2,r1,r2; char *salt; { static char outbuf[14]; unsigned long i; unsigned long s,v1,v2; /* Unfortunately we've done an extra E expansion -- undo it at the same time. */ v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; v1 |= efp[ 2][(l1>>=6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; v1 |= efp[ 1][(l1>>=10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; v1 |= efp[ 0][(l1>>=6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; v1 |= efp[ 6][(l2>>=6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; v1 |= efp[ 5][(l2>>=10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; v1 |= efp[ 4][(l2>>=6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; v1 |= efp[10][(r1>>=6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; v1 |= efp[ 9][(r1>>=10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; v1 |= efp[ 8][(r1>>=6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; v1 |= efp[14][(r2>>=6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; v1 |= efp[13][(r2>>=10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; v1 |= efp[12][(r2>>=6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; outbuf[0] = salt[0]; outbuf[1] = salt[1] ? salt[1] : salt[0]; for(i=0; i<5; i++) outbuf[i+2] = bin_to_ascii((v1>>(26-6*i)) & 0x3f); s = (v2 & 0xf) << 2; /* Save the rightmost 4 bit a moment */ v2 = (v2>>2) | ((v1 & 0x3)<<30); /* Shift two bits of v1 onto v2 */ for(i=5; i<10; i++) outbuf[i+2] = bin_to_ascii((v2>>(56-6*i)) & 0x3f); outbuf[12] = bin_to_ascii(s); outbuf[13] = 0; return outbuf; } char *crypt(); /* Stub to provide fcrypt compatibility */ char *fcrypt(key, salt) char *key; char *salt; { return crypt(key, salt); }