FILE INTEGRITY CHECKER USING MOBILE AGENTS
Submitted by: Abhijit J Pathak






Student Id     : 2541017
Table of Contents

11.
Introduction


12.
System Overview


23.
System Architecture


23.1
Ajanta Architecture


43.2
File Integrity Checker Architecture


5Design Alternatives


64.   Detailed Design


64.1
Configuration file


74.2
The FileName structure


74.3
Launcher for the System


84.4
The File Signatures


84.5
File Processor Agent


94.6
Database Design


94.6.1
Signature Tables


104.6.2
Event Table


104.7
Report Generator Tool


105.   Fault Tolerance


105.1
Failure of Agent Server


115.2
Failure of Agents


116.   Results


127.   Future Work


128.   User Manual


159.
References




Table of Figures

4Figure 1




1.      Introduction

It is very difficult to compromise a system and leave no traces without altering a system file. Most of the attackers change some of the executables like “ls” in UNIX so that the files they have created do not show up.  Similarly the command “ps” could be changed so that the malicious processes are not displayed on the console. Some other common changes are removing the entries in the log files which capture login information and other activities of attackers or changing a password file to add or change user information so that future logins are possible. There are many more examples of such attacks. 

Thus file integrity checkers are an important capability in intrusion detection. A file integrity checker gives system administrators ability to monitor file systems for added, deleted, and modified files. A file integrity checker computes a checksum for every guarded file and stores it at a safe place. At a later time you can compute a checksum again and test the current value against the stored value to determine if the file has been modified. There are many commercially available tools implementing integrity checkers. But most of them are restricted in terms of usability.

On the other hand Mobile Agents are autonomous, "intelligent" programs moving through a network, searching for and interacting with services on user’s behalf. These agent systems use specialized servers to interpret the agent's behavior and communicate with other servers. A mobile agent has inherent navigational autonomy and it can ask to be sent to some other node to perform specified tasks. 

This project combines these two techniques to come up with a versatile and effective File Integrity Checker System. The following paper discusses the design, implementation and experiences with the application of mobile agents as File Integrity Checkers.

2. System Overview

The entire system is based on Ajanta mobile Agent platform, which provides the framework for creating and managing agents in   a system.

Ajanta provides primitives for creating and dispatching agents, securely controlling agents at remote sites, and transferring agents from one server to another. For secure access to server resources by visiting agents, a proxy-based access control mechanism is used. The Ajanta design includes mechanisms to protect an agent’s state and prevent misuse of its credentials. 

The File Integrity Checker System uses the APIs provided by Ajanta to create and manage mobile agents. When the system is stared with some given configuration, the system creates and launches an agent pair. One of the agents is a stationary-agent called FileProc Agent and the other is an itinerant mobile agent called FileMon Agent. The FileMon Agent reads the configuration file and generates its itinerary, which is the list of hosts to visit for monitoring, as specified in the configuration file. At each host it gets the detailed information about files like the file size, creation, modification times, owner information, number of inodes and disk blocks occupied by the file along with access permissions. It also calculates the hash of the file contents using SHA algorithm. It then sends all this information back to the FileProc agent and goes to the next host in the itinerary. 

The system operates in two phases, initialization phase and monitoring phase. During the initialization phase the FileProc agent stores the received file information, in a database as reference, we call this information as the File Signature. Once the Signatures for all the files on all the monitored hosts are obtained, the system goes into the monitoring phase. In this phase the FileMon Agent again calculates the File Signatures and sends them to the FileProc Agent The FileProc Agent then compares the received signatures with the signatures in the database and generates events like a file is added or deleted or a file is modified.

The system provides a text based User Interface so that the user can configure and start the system to launch the agents. It also provides a Report Generation Tool, which queries the database and generates a report with the information about added/deleted or changed files. 

3. System Architecture

The entire system is based on Ajanta mobile agent platform, which provides the framework for creating and managing mobile agent based distributed applications. The following section describes the Ajanta system architecture.

3.1 Ajanta Architecture

Ajanta [5] is a secure Java-based framework for programming mobile agents in the Internet. In Ajanta, mobile agents are mobile objects, which can migrate autonomously in distributed environments. Agents encapsulate code and execution context along with data, and they are executed on behalf of a user. The Ajanta system provides facilities to build customizable servers to host mobile agents, a set of primitives for the creation and management of agents, security related components and a global naming service. All globally accessible entities are given location-independent names. 
Security is an integral part of Ajanta design. Ajanta provides components for authentication, public key maintenance, access control, host resource protection, and cryptographic services. Each agent is given a set of unforgeable credentials, which contain the agent’s name, its owner’s name, and a set of privileges granted by the owner. At a remote node an agent executes in a protection domain created corresponding to its owner.  An agent-server can enforce any desired policies for accepting remote agents. An agent server grants to a visiting agent restricted access of its local resources, based on the agent’s credentials. Agents with two different nodes can communicate with each other using RMI, if permitted by the host servers. It is also possible for an application to remotely invoke methods of its agents. This communication can be authenticated, provided the remote hosting server is trusted. An application can also securely control its remote agents to either terminate their execution or recall them back.
3.2 File Integrity Checker Architecture

FP: - File Processor Agent

FM: - File Monitor Agent

Figure 1  File Integrity Checker Architecture
The File Integrity Checking framework architecture is described below:

Each of the monitored hosts in the system run a server program called an Agent Server, which provides the facility for executing the visiting agents. The system also has a special purpose Agent Server called Launcher, which is responsible for creating the agent-pair, launching the FileMon Agent and running the FileProc Agent.
The Launcher launches FileMon Agent to the first host, say Host A in the itinerary. The FileMon Agent works like a Data Gatherer. It carries a data structure called FileName, which contains the list of files along with their specific attributes to be monitored. Once the FileMon Agent reaches the monitored host, it retrieves the directory structure for each of the files by making system calls. Then for each of the files, it gets the attributes to be monitored. Depending on this information, the File Signatures are calculated. The FileMon Agent then invokes remote methods on FileProc Agent to process these signatures. 

If the system is in the initialization phase, the signatures database is created and the received signatures are stored. In the monitoring phase, the received signatures are compared against the stored signature for each file and discrepancies are detected. The database is stored on a secure server with restricted logins.

Once all the file signatures are sent, the FileProc Agent is sent to the next host in the itinerary. Once all the hosts in the itinerary are visited, the FileMon Agent comes back to the launcher host and waits there for the specified duration before starting of the next cycle. The monitoring frequency is configurable and can be specified through the configuration file.

The detection of changes in file attributes and contents is based on the comparison of these signatures. Two different design approaches for comparing the signatures using mobile agents are described below

Design Alternatives

· The Agent can carry the signatures of the files to each host.  It can then calculate the signatures of the monitored files again and compare those with the original ones it is carrying. If some difference is found it can trigger an event

· The Agent can carry the list of files names to the hosts. Calculate the signatures at each host. Then send back the information to the File Processing Agent at the secure server and compare with the original database and generate event in case of any discrepancy

For the implementation we choose the second alternative for the following reasons

· The mobile agent does not have to carry any information about the file signatures from the last host when it goes to the next host.

· The agent remains lightweight and even if the agent is compromised, a malicious host can not get  information about the files on the other hosts in the system

The File Integrity Checker System is configurable. The user can specify the files to be monitored and the various attributes to monitor for each file. The files can be monitored at different frequencies. The directories can be monitored in recursive or non-recursive fashion.

All these details are specified through a configuration file.

The main difference from the traditional tools for file integrity checking like tripwire is usability and flexibility. User can create more than one agent-pair to monitor various types of files at different frequencies. Once the user creates the configuration file for the system, it works autonomously. Different types of files on the host have different monitoring requirements. For example changes in the system log file sizes are expected but a change in inode number, file ownership or file modes is cause for alarm. Also for system binaries, like the files stored in /bin, change in any value stored in the inodes (except for the access timestamp) should be reported. The configuration file gives user this flexibility to monitor various files for various attributes. This way the alerting events are generated only for the specific attributes. 

The system uses MySQL database server for maintaining the signatures database. It is maintained on a secure node and only the resident FileProc Agent  has  access to the database. The base Ajanta system provides the authenticated and secure communication facilities for Agent-Agent communication

4. Detailed Design 
As described above the system consists of many different components. This section describes the design of these components in detail.

4.1 Configuration file

The configuration file is used for programming the system for monitoring the files on different hosts for various attributes. It has the following syntax

host:hostname

Filenames
-fileattribute flags

A sample file is shown below:

host:newton.cs.umn.edu

/home/grad09/apathak/proj/programs/jni  -a

!/usr/lib/link_audit/64

/usr/include         -ab

=/dev                   -ai

The first line tells the name of the host to monitor and the remaining lines list the files/directories to monitor. The files starting with ‘!’ are excluded from monitoring. The directories starting with ‘=’ are monitored non-recursively. That means only the files and immediate directories in the parent directory are monitored but not the files inside the sub-directories. All the other directories are monitored in recursive mode.

The configuration file also supports various flags for monitoring different attributes


-a 
: Ignore the last access time for the file


-m 
: Ignore the last modification time


-c 
: Ignore the file creation time


-i
: Ignore change in the inode information for the file


-u
: Ignore the change in the user id of file owner


-g
: Ignore the change in the group id of the file owner


-s
: Ignore the change in the file size


-b
: Ignore the change in the number of disk blocks allocated to   

        
  the file


-p
: Ignore change in access permissions for the file


-h
: Ignore the change in the file contents hash value

With various combinations of above flags and monitoring modes, user can exactly specify the attributes, which he/she wants to monitor.

4.2 The FileName structure
The mobile agent carries a data structure with itself called FileName. This structure has the names of the files to monitor on each host along with the attributes to monitor for each file.

The structure is an array of objects. Each of these objects consists of a list of strings within them. The first string specifies the name of the file giving the full path. The remaining strings are name-value pairs which specify the attributes to monitor.

4.3 Launcher for the System

The launcher is an extension of Agent Server, which creates the FileProc and FileMon agents. The configuration file is parsed to generate an itinerary, which determines the path of the mobile agent. Then the agents are created and the mobile agent is dispatched to the first node. The launcher is also responsible for starting a user interface thread, which lets the user launch various agents with different modes of operation. 

The File Monitoring Agent can be launched in 3 different modes

· Initialization and monitoring mode: In this mode the agent pair creates the file signatures during the first round of mobile agent and in the subsequent rounds it monitors those files against the stored signatures

· Initialize only mode: In this mode the mobile Agent just makes one round to each of the hosts in its itinerary to create the reference file signatures and stops after that

· Monitor only mode: In this mode the Agent assumes the availability of the file signatures in the database and it makes rounds to monitor the changes in the signatures against the stored signatures
4.4 The File Signatures

The File Signature structure maintains all the information regarding the file including the hash value of the file contents. For a directory, the structure contains the list of names of the files in each directory. When the user specifies directories to be monitored in recursive mode, the directory structure is not known at the launcher node so when the mobile agent reaches the host, it figures out the directory structure by making UNIX system calls. Once the file structure is known, for each file, it makes another system call to get the meta-data information about the file. It reads the bytes in the files and calculates the 20 byte hash value using SHA algorithm for each file and stores that as a part of signature. While gathering the attributes for the file, it checks which attributes need to be monitored using the FileName structure and stores the information for those. Once the information gathering is finished, it makes RMI call to the processor agent and sends this structure along with the hostname and goes to the next host.

4.5 File Processor Agent

This agent provides remote interfaces, which are invoked by the FileMon Agent to create the file signatures as well as to check the file integrity. File Processor agent is also responsible for communicating with a database. 

During the initialization phase it connects to the signature database and adds the file signatures to it. Along with the signatures, it also maintains a separate table, which contains the mapping between a directory and the files in that directory. This table is used to detect if any file is added or deleted from the directory. 

During the checking phase, the agent checks the hostname and queries the database for the files from that host. For each monitored file from that host, it first finds out the attributes, which are required to be monitored. Then it compares those attributes signature stored in the database with the received signature from the FileMon Agent. In case of a mismatch a File Changed Event is generated. This event has the filename along with the old and the new attribute values. Similarly, if a file signature is received which is not present in the database, a “File Added Event” is generated. In a case where file signature is present in the database but the corresponding signature is not received from the FileMon Agent, “File Deleted Event” is generated. Both File Added and Deleted Events have all the information about the file.

en a file is added or deleted, if the parent directory is also monitored, the File Changed Event is generated for the parent directory as the contents of a directory is the list of files in it. 

4.6 Database Design

As discussed earlier in the paper, MySQL database is used for storing the file signatures. MySQL is Open Source relational Database. The database primarily consists of two types of tables. The first is Signature tables and the second is Event tables.

1.6.1 Signature Tables

Signature tables form the heart of the database and store the file signatures. It consists of following columns

Hostname: The machine name on which the file is residing if it’s a local file or on which the file is mounted if it’s a remote file.

FileName: Stores the full pathname of the file

TimeStamp: Date/Time field which stores the time at which the signature is generated

File Attributes: These are multiple columns which store the following attributes:

Whether the filename represents a directory, the inode number, number of links pointing to that file, the user-id and group-id of the owner of the file, the file size in bytes, number of storage blocks the file is occupying on the physical storage media, file creation time, modification time, last time at which the file was accessed by any user, and the permissions of the file.

Hash Value: This a binary stream which stores the 20 byte hash of the file contents.

The Hostname and Filename together constitute the primary key as both of these columns together represent each file uniquely

1.6.2 Event Table

The event table consists of following three events:

· File Added Event: An entry in this table is created whenever a file is added in any of the monitored directories on the host

· File Deleted Event: Entry is created whenever any file is deleted from the monitored directories

· File Changed Event: Whenever a monitored file is changed the entry is added here

The Event table lists the detailed information about the file for which that particular event is generated. It also has the Time Stamp information at which the Event is generated. The File Changed Event table stores all the original attributes as well as the changed attributes for each file.

4.7 Report Generator Tool

This is a java based tool which generates a detailed report for the user describing the Event and all the attributes of the file generating that event. It connects to the database and performs SQL queries to get the entries in various event tables. Once an entry is obtained all the columns are parsed and the information is converted in user readable text format.

5. Fault Tolerance 
There are various aspects when we consider the fault tolerance of the system. The two important scenarios are failure of Agents and Agent Servers.
5.1 Failure of Agent Server

In this case, it may happen that one or more hosts specified in the itinerary are down or they may not be running Agent Server, which is responsible for hosting the mobile agent. This scenario is handled by building an additional intelligence in the Agents. Before making the next hop it checks if the next hop Agent Server is alive. If the server is not alive the Agent gets an exception called “Launch Failed Exception”. The Agent then marks this host and maintains a count of failed hosts. It then skips this host in the itinerary and tries to go to the next host. If the launch is unsuccessful again, the Agent increments the count of failed hosts by one. It keeps trying till the failed hosts equal to the number of hosts in the itinerary. If all the hosts fail, the Agent throws an exception and is sent back to the Launcher.

5.2 Failure of Agents

It may happen that for some reason the Mobile Agent dies on one of the hosts or when it is in transit. The Launcher handles this case. As soon as the Agent is launched a timer is started. The timeout value is specified by the user. If the Agent does not come back within the specified time, the Launcher creates a new Agent and launches it with the same itinerary.

6. Results
This system is currently running in the lab environment consisting of ten nodes. The Launcher sends File Monitor Agents to each host to be monitored based on a configuration file. This file contains the information about the files to be monitored on each host and the monitoring frequency. The experiments consist of monitoring system files as well as selective files in user home directories and testing for the following scenarios which depict intrusion activities

1. Changing the contents of the files by removing or adding single characters, single and/or multiple lines from the text files.

2. Changing the owner information for the files

3. Moving the files to and from various directories on the same and to different machines

4. Changing the contents of the log files or renaming the log files.

5. Replacing the binary file with another binary file with the same name and size

6. Removing entire directory recursively with all the files in it.

7. Changing a file deep in a directory hierarchy for a directory which is monitored in recursive mode

8. Changing the access times of the files by opening those without modifications

For all the tests, the system successfully detected the file and the changed attribute. 

7. Future Work 
· The File Monitor Agents can sense the load on the hosts before launching the Agents. This way if the host is heavily loaded and the CPU and memory usage is above certain threshold, launching to that Agent Server can be skipped and next one can be tried.

· The Report Generation Tool can be customized to generate a report for a specific host or specific event. It can be modified to generate reports in summary mode if the user doesn’t want to view the detailed information about each file

· The Launcher and Report Generated UI can be integrated and converted to Graphical Interface to make system easier to use.

· The system can be ported on various platforms including Windows NT.

8. User Manual
This section contains the user manual for the File Integrity Checker System.

1. Creation of Config file

Before starting the File Monitoring System, create a file typically called “Config” in the same directory from which the File Monitor Agent Server is invoked.

The Config file has the following syntax:

host:turing.cs.umn.edu

/home/grad09/apathak/proj/programs/jni  -a

!/usr/lib/link_audit/64

/usr/include            -a

=/dev                   -a

host:newton.cs.umn.edu

/home/grad09/apathak/proj/programs/jni  -a

The line staring with ‘host:’ contains the hostname, which we want to monitor, and lines after that contain the list of the files to monitor.

The filename starting with ‘!’ is excluded from the monitoring list

The directory name starting with ‘=’ is monitored in non-recursive mode

All other directories are monitored in recursive mode

(In recursive mode all the files including the subdirectories and the files in sub directories are monitored and in non-recursive mode only the files in the given directory are monitored and all the subdirectories are excluded)

Each file can be monitored for different attributes. The default mode is to monitor all the attributes. If the user does not want to monitor a specific attribute, it can be turned off using the following flags

-a 

Do not monitor Change in Last Access Time for the file

-m

Do not monitor Change in Last Modification Time for the file

-c

Do not monitor Change in Last Change Time for the file

-i

Do not monitor Change in I-node for the file



-n

Do not monitor Change in Number of Links for the file

-u

Do not monitor Change in User id for the file

-g

Do not monitor Change in Group id for the file

-s

Do not monitor Change in File size

-b

Do not monitor Change in Number of storage blocks allocated for the file

-p

Do not monitor Change in File permissions

-h

Do not monitor Change in Contents of the file

Note:

In recursive mode all the files within that directory will be monitored for the attributes specified for the directory unless the file is mentioned separately

The flags will be ignored for the files, which are excluded from monitoring

2. Creation of dbConfig file

The dbConfig file contains the Database access information. This file is also located in the same directory as the FileMon Agent Server

The syntax is:

#EventsDB

dburl1 = jdbc:mysql://socrates.cs.umn.edu:10000/test

dbuser1 = mobile_agent

dbpasswd1 = xxxxxx

#SignaturesDB

dburl2 = jdbc:mysql://socrates.cs.umn.edu:10000/test

dbuser2 = processor_agent

dbpasswd2 = xxxxxx

‘dburl1’ gives the location of the Database where the Events are stored and dburl2 is the location where the file signatures are stored. The location is followed by username and password for the database.

3. Starting of FileMon Server

Before starting the system, the user should have following things setup along with Ajanta Environment.

Add the following entry in CLASSPATH variable

/project/space02/dev/dev_jdk1_3/ajanta/apps/filemon/JavaUnix-1.0

Add the following entry in LD_LIBRARY_PATH variable

/project/space02/dev/dev_jdk1_3/ajanta/apps/filemon/JavaUnix-1.0/jre/lib/ext

Then the FileMon Server can be started with the command

java network.filemon.FileMon filemon

4. Selecting the Menu options

The File Monitoring Agent can be launched in 3 different modes

1. Initialization and monitoring mode: In this mode the Agent creates the file signatures during the first round and in the consecutive rounds it monitors those files against the stored signatures

2. Initialize only mode: In this mode the Agent just makes one round to create the file signatures and stops after that

3. Monitor only mode: In this mode the Agent assumes the availability of the file signatures in the database and it makes rounds to monitor the changes against the stored signatures

Then User has to select the monitoring frequency for the Agent. The frequency should be entered in minutes. The Agent keeps monitoring the files with the specified frequency

Then User has to give the Config file, which is created, earlier in section 1.

5. Launching Additional Agents

The user can launch additional Agents by using the menu in the same way as before

6. Report Generation Tool

The report Generation tool is a text based report generator which queries the database and generates a detailed report about the added/deleted or changed files.

The Report Generation Tool can be started with the command

java Reporter

The Report contains the following information

Event Name : The file is Added/ Deleted or Changed

Hostname and the filename

Attributes: In case of Added file the attributes of the added file are shown


           For Deleted file the attributes stored before deletion are shown

  For Changed files, both original and changed Attributes are  

  shown

9. References

1. "Active Monitoring of Network Systems using Mobile Agents", by Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, Abhijit Pathak, Megan Carney, Murlidhar Koka, and Paul Dokas.   To appear in proceedings of Networks 2002, a joint conference of ICWLHN 2002 and ICN 2002.

2. “Experiences with Tripwire: Using Integrity Checkers for Intrusion Detection”, by Gene H Kim and Eugene H Spafford COAST Laboratory, Dept of Computer Science Purdue University

3. "Paradigms for Mobile Agent-Based Active Monitoring", by Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, Megan Carney, Paul Dokas. IEEE Network Operation and Management Symposium (NOMS-2002)

4. "Security in the Ajanta Mobile Agent System", by Neeran Karnik, Anand Tripathi. Software - Practice and Experience, January 2001.

5. "Design of the Ajanta System for Mobile Agent Programming" , by Anand R. Tripathi, Neeran M. Karnik, Tanvir Ahmed, Ram D. Singh, Arvind Prakash, Vineet Kakani, Manish K. Vora, Mukta Pathak. Journal of Systems and Software, May 2002.

Host A





   Agent Server





FM





Host B





  Agent Server





Host C





   Agent Server





Launching Host





         Launcher





FP





FM








 Database











PAGE  
2

