

MG 1.3

Modifications

Document

Ross Peeters

28 February 1997

ABSTRACT

MG 1.3 contains many enhancements over the previous version. Different stemming methods can be applied to the query using the same collection. Each term in a query can be stemmed with any one of four methods. Weightings can be applied to terms in a ranked query. A collection can be built on one system and read from a system that may use a different endian ordering. Merging of level 3 paragraph files is now possible. The compressed text of a collection can be decompressed with document and paragraph breaks imbedded. The porting of MG to MSDOS with 32 bit processing has been incorporated into the MG system. The number of times each query term appear
s in the collection can be returned.

�Introduction

MG version 1.3 contains many enhancements over the previous version (MG 1.2). Changes made to the source code can be identified by in-line comments of the form

	[RPAP - Month 97: Functionality]

where Month is the final month of changes and Functionality is the functionality that the change was made for.

The following sections outline the implementation of the extra functionality provided by MG 1.3, which files were modified, and in some instances a brief description of what was modified in each file.

Functionality

The extra functionality provided by MG 1.3 over MG 1.2 include

Ability to perform queries with any one of four stemming alternatives:

non-casefolded and non-stemmed

casefolded and non-stemmed

non-casefolded and stemmed

casefolded and stemmed

Ability to stem each word differently within the same query

Ability to apply a weight to a term in a ranked query

Incorporation of specific NZDL� code

Ability to create a collection on one system which is readable on another system that may use a different endian ordering

Ability of merging level 3 inverted files

Ability to decompress the compressed text of a collection with document and paragraph breaks imbedded

Ability to use the same code for MSDOS systems using 32 bit processing.

Ability to display the number of times each query term appears in the collection.

The modifications made to the current system led to the following outcomes:

Results from queries are almost the same as those from the current system

Able to build collections as performed currently i.e. is backward compatible

Minimal changes to the current system have been made by using the vast libraries provided by MG

Minimised any extra processing during query time

�Stem Indexes

Currently MG allows only one type of stemming method to be incorporated into a collection. If queries for different stemming methods are required then the collection needs to be built for each stemming method and the particular collection run through mgquery. It would be more convenient if only one build was performed but allowed different stemming methods at query time to be performed: for the entire query but also for each term in the query.

For ranked queries a weighting can be given to a term by incorporating many instances of that term in the query. A more precise and practical method for applying a weighting to individual terms would obviously be advantageous.

The changes for the functionality provided in this section are identified in-line by

[RPAP - Jan 97: Stem Index Change]

Implementation

By building the collection as normal with a non-casefolded and non-stemmed stemming method (–s 0 parameter to mg_passes), every word is indexed. To perform one of the other stemmed method queries, mgquery needs to know which terms in the blocked dictionary (*.invf.dict.blocked) stem to the same root as the term in the query does. Obviously a sequential search through the blocked dictionary is inappropriate. There needs to be a way to access the terms in the blocked dictionary without searching. To do this an index into the blocked dictionary is built, which references all the words that stem to the same root, or stemmed term. (These indexes will be identified as stem indexes throughout the rest of this documentation).

The stem indexes are similar in style and layout to that of the blocked dictionary. They use “3-in-4” front encoding with two internal indexes—one to index which block should be read into memory and one to index which “3-in-4” block to access in that buffered block. See http://www.mds.rmit.edu.au/mg/prog_notes/data_files.html for more information on the structure of the blocked dictionary.

For each entry in the stem index the following data is stored:

<copy, suff, word> <num_entries> {<num_cases, block, 3-in-4_block, offset>}

The first three entries identify the stemmed term. The num_entries field indicates how many references, the part between the curly braces ({ ... }), will follow. Each reference contains the number of sequential words (num_cases) in the blocked dictionary that stem to the same root, starting from the term identified by the block, 3-in-4_block and offset values. block identifies which block to load into the memory buffer. 3-in-4_block identifies which 3-in-4 block in the main block should be accessed. offset identifies which word in the 3-in-4 block to start from. The diagram below shows the ideas just described.

�

When a query is submitted (boolean or ranked) a term is extracted from the query, stemmed appropriately, and if the stemming method is other than non-casefolded and non-stemmed, then the appropriate stem index is looked up.

All the terms in the blocked dictionary are referenced by the stem index and extracted out. For boolean queries all the terms are added to the boolean tree, whereas for ranked queries only those that are not already in the term list are added. (Query term counts for duplicate terms are accumulated). The rest of the query processing is as normal (almost!).

To control the type of stemming to apply to the query two new environment variables have been created. These have been named casefold and stem and both take boolean values: either on, off, yes, no, true or false. They specify the default stemming method by indicating whether or not the terms should be casefolded and/or stemmed respectively. If the collection was not built with stem indexes then these two variables are ignored and the stemming method used at build time of the collection is used.

Effects on Ranked Queries

The above solution has introduced errors in the Cosine Rule� for ranked (and approximately ranked) queries. The problems occur in two places:

The first problem is that the Cosine Rule uses in its calculation Wd, the weight of the document. This is pre-computed at build time of the collection and uses two variables ft, the number of times the term appears in the collection, and fd,t, the number of times the term appears in the document. However, for different stemming methods, the frequency of a stem word in the document may be different. A point in case: consider the following “document” that has not had its terms casefolded or stemmed

A computer performs computations

and the same document with the terms having been casefolded and stemmed

a compu perform compu

There are two terms in the second case that are the same, so fd,t will be different for this stemming type. Similarly, ft will also be different. Hence Wd will be different causing differences in the ranking. This problem however only has a small effect on the ranking.

The second problem is similar in nature but has a greater effect on the ranking. The Cosine Rule uses the TF*IDF� rule to weight terms according to their inverse document frequency i.e. 1/ft. Thus common terms contribute less to the ranking than rarer terms do. To see how the ranked queries are affected when a query is performed using stem indexes, consider the following example:

	alice queen

where the stemming method is casefolded and stemmed. The term list submitted to the Cosine Rule may contain the following terms:

Term�ft��Alice�100��ALICE�5��Queen�10��

When ranked, documents that contain ALICE will most likely come first, followed by those with Queen, and finally those with Alice. However, we wanted all cases of alice to be treated as one, i.e. the output should have been those with Queen first, followed by those documents with Alice or ALICE.

The correct value for ft has been discussed previously, and cannot be accurately determined. However, ft can be approximated for similar terms by using the maximum ft of all similar terms. That is, the terms Alice and ALICE will both have ft = 100 when used in the Cosine Rule.

This solution produces rankings that are very close to that of the current version (v1.2). As Shane Hudson described in mgmerge, the effects to the rankings are “difficult to assess since the ‘correct’ ranking of documents for a query is subjective.” Tests show that the top documents in the current version are at the top of the rankings in the new version except possibly in a slightly different order.�

Parameterised Terms

To allow a stemming method to be applied, or a weighting to be given to a term in a query, a system needed to be implemented whereby a term could have a variable number of parameters applied to it. To do this a character that cannot exist in a term is appended to the term followed by the parameter. For example to apply a specific stemmng method to a term

	Knuth#0 computing

where ‘#’ indicates that a stemming method is to be applied to the term and ‘0’ is the stemming method to apply (in this case non-casefolded and non-stemmed). This in effect overrides the default stemming method for the entire query.

To apply a weight to a specific term

	Knuth/10 computing

where the ‘/’ indicates that a weighting parameter is to be applied to the term and ‘10’ is the weighting to apply.

A weight, say n, specified by the parameter has the same effect as if the term appeared n number of times in the query. Thus the weights applied by the parameter is controlled by the mgquery environment variable qfreq. If the term appears multiple times in the query then the weights are accumulated for that term. See the section Querying A Collection to find out how to use the parameters.

Parameters were implementation by using a macro PARSE_OPT_TERM_PARAM (defined in words.h), to parse any optional parameters a term may have. This macro is called before the PARSE_NON_STEM_WORD.

Building a collection

The collection is built with a non-casefolded and non-stemmed stem method. A build variable do_indexed (defined in mgbuild) is set to one (1) if an indexed version is required, zero otherwise. If do_indexed is set then the stemming method is ignored and set to zero. The collection is built as performed previously. Then mg_stem_idx is executed three times to generate the casefolded and non-stemmed, non-casefolded and stemmed, and casefolded and stemmed stem indexes (*.invf.dict.blocked.1, *.invf.dict.blocked.2 and *.invf.dict.blocked.3 respectively). Each time mg_stem_idx is executed the header for the blocked dictionary is updated to reflect that a stem indexed version of the collection has been built.

See the mg_stem_idx documentation at the end of this report for its usage.

�Querying a collection

When mgquery begins initialising and the collection was built with stem indexes, these files are initialised and used for processing the queries.

Submitting a query to MG has not changed but the terms can now have parameters to change the default operation on that term. The parameters currently recognised are the stemming method and weighting options.

Since the stem indexed version of a collection has the ability to query on all four stemming methods, it is now possible to stem each word in the query differently. Take for example the boolean query Bell & (computers | algorithms). Here you can set the default stemming method to be casefolded and stemmed (via the environment variables casefold and stem respectively), but this could lead to references to bell. To overcome this the stemming parameter can be applied to force Bell to be searched non-casefolded and non-stemmed so that only Bell would be searched

	Bell#0 & (computers | algorithms)

where ‘#’ indicates that a stemming method is to be applied and the ‘0’ is the particular stemming method. The available stemming values are:

	0 = non-casefolded and non-stemmed

1 = casefolded and non-stemmed

2 = non-casefolded and stemmed

3 = casefolded and stemmed

For ranked queries a weighting can be applied to modify the emphasis of a particular term. Previously the weighting was given by the number of times the term appeared in the query. Now a weighting can also be applied to a term via a parameter:

	computers/10 algorithms

where ‘/’ indicates that a weighting is to be applied and the ‘10’ is the weighting to apply. The weighting value must be a positive integer, i.e. greater than zero.

The term parameters can be placed in any combination. For example, a ranked query such as

	computers#3 Knuth#0/10

will casefold and stem computers but not Knuth and rank the results with a higher emphasis on the term Knuth.

�Modifications to files in ./lib

local_strings.c

Function casecompare() created. This function uses a static array to compare two words in a way similar to the dictionary order. The ordering of the words is similar to a case-insensitive comparison, but if there is a match, then a case-sensitive comparison is performed.

local_strings.h

Added the function prototype for casecompare().

stem.c

Added constant MAX_STEM_LENGTH - defined the same as MAXSTEMLEN in ./src/text/words.h.

Fixed bug in stem() where a NULL character was appended to the end of the word, but it could be appended out of the array bounds of the word. Modified stem() so that the word to be stemmed is first copied into another array of size MAX_STEM_LENGTH + 2 which would guarantee that the NULL character was appended correctly. This copy was then stemmed and the result copied back into the allocated memory of the old word.

Modifciations to files in ./src/text

Makefile.in

Added mg_stem_idx.c and mgstemidxlist.c to SOURCES list.

Added mg_stem_idx and mgstemidxlist to EXEC list.

Added stem_search and mg_errors object files to BOOL_OBJS list.

Added mg_stem_idx and mgstemidxlist compile instructions.

ivf.pass1.c

ent_comp(): Modified to use casecompare() instead of compare so that the *.invf.dict file was in “dictionary” order.

backend.h

Added stemmed_idx structure similar to the stemmed_dict structure.

Added to structure stemmed_dict three pointers to three stemmed_idx structures, one for each stem index.

Added to struct query_data File pointers for each of the three stem index files.

backend.c

open_all_files(): Added instructions to open the three stem indexes and to close them if an error occurred in opening any of the required files.

close_all_files(): Added instructions to close the stem indexes if they are open.

InitQuerySystem(): Added instructions to load the header information of the stem indexes into memory if the collection was built with stem indexes.

ResetFileStats(): Added instructions to call ZeroFileStats() on all three stem indexes if the collection was built with stem indexes.

TransferFileStats(): Added instructions to set the current file stats to the cumulative file stats if the collection was built with the stem indexes.

environment.c

InitEnv(): Added two environment variables casefold and stem. These are used for queries based on a collection that was built using stem indexes. They indicate what type of default stemming should be applied to the terms in a query.

term_lists.h

Added max_doc_count variable to the WordEntry structure.

Added the stem pointer to the TermEntry structure.

term_lists.c

AddTerm(): Set the word entry variable max_doc_count to zero (0) and added the stem word to the term entry.

FreeTermList(): Added the deallocation of the stem word.

PrintTermEntry(): Added the print statement of the stem word to the output file.

words.h

Added the constant MAXPARAMLEN equal to 20 characters, which is the maximum number of characters that will be accepted for the parameter on the query line.

Added the constant WEIGHTPARAM defined as ‘/’ which is the character that signals that the next set of characters in the query line are to be interpreted as the weight for the preceding term.

Added the constant STEMPARAM defined as ‘#’ which is the character that signals that the next character in the query line is to be interpreted as the stemming method for the preceding term.

Added the macro PARSE_OPT_TERM_PARAM() which determines if the next set of characters on the query line form a parameter to be applied to the preceding term. If it is, then it reads in the parameter skipping past any characters that are longer than the MAXPARAMLEN. Otherwise, the macro exists without moving on to the next character.

mg_files.h

Added magic numbers MAGIC_STEM1, MAGIC_STEM2 and MAGIC_STEM3 for the stem indexes.

Added the file suffixes INVF_DICT_BLOCKED_1_SUFFIX, INVF_DICT_BLOCKED_2_SUFFIX and INVF_DICT_BLOCKED_3_SUFFIX for the stem indexes.

mgstat.c

Added function ProcessStemBlk() which reads the stemmed dictionary header and returns whether or not the collection is built with the stem indexes.

main(): Added call to ProcessStemBlk() and if the collection was built with the stem indexes then each stem index file is processed as part of the required files for mgquery.

invf.h

Added indexed variable to the stem_dict_header structure to record whether or not the collection was built using the stem indexes.

Added stem_idx_header structure which is included to the front of each of the stem index files. It does not include the magic number.

invf_get.c

CosineDecode(): Modified WordLog calculation to use max_doc_count of the word entry instead of doc_count.

CosineDecodeSplay(): Modified WordLog calculation to use max_doc_count of the word entry instead of doc_count.

CosineDecodeHash(): Modified WordLog calculation to use max_doc_count of the word entry instead of doc_count.

CosineDecodeList(): Modified WordLog calculation to use max_doc_count of the word entry instead of doc_count.

stem_search.h

Added prototypes for FindWords() and FreeStemIdx() functions.

stem_search.c

Added ReadStemIdxBlk() function to initialise the stem indexes in main memory.

Added GetIdxBlock() function to calculate the required block a word may be located in the stem index.

GetBlock(): Changed comparison function from compare() to casecompare() to work with the new ordering of the terms in the stemmed dictionary.

FindWord(): Changed comparison function from compare() to casecompare() to work with the new ordering of the terms in the stemmed dictionary.

Added FindWords() function which returns a term list of all the terms that stem to the same “word” that is passed in.

FreeStemDict(): Added calls to free the stem index structures from memory.

Added FreeStemIdx() function which deallocates the stemmed_idx structure from memory.

bool_query.c

BooleanQuery(): Modified call to ParseBool() to pass in the stemmed_dict and is_indexed parameters.

bool_parser.h

Modified prototype definition for ParseBool() function.

bool_tester.c

Modified call of ParseBool() by passing NULL for the stemmed_dict pointer and zero (0) for the is_indexed parameter - the parser does not need these for the boolean tester program.

bool_parser.y

Included backend.h for the stemmed_dict structure definition and stem_search.h for the FindWords() function prototype.

query_lex(): Modified function to remember the state it was in from call to call. The state information is required because the procedure uses FindWords() to retrieve all words that stem to the same root as that of the query term, but query_lex() only returns one term at a time to the lexical analyser. Added PARSE_OPT_TERM_PARAM to accept parameters to apply to the term - stem method is the only parameter processed as weights to not apply to boolean queries.

ParseBool(): Added the stemmed_dict pointer and indexed parameters to the procedure definition.

query.ranked.c

ParseRankedQuery(): Added the indexed parameter to the procedure definition which indicates whether or not the collection was built with stem indexes. Modified procedure to parse optional term parameters on the query line. If the collection was built with stem indexes and the stemming method to apply to a term in the query line is anything but non-casefold & non-stemmed, then FindWords() is called which will return a list of terms that stem to the same root as that of the term in the query. The terms in the returned list from FindWords() are then added to the list of terms from the query, with duplicates removed.

RankedQuery(): Modified call to ParseRankedQuery() to pass in whether or not the collection was built with the stem indexes.

mgquery.c

File_Stats(): Added instructions to call StatFile() on each of the stem index files if the collection was built with stem indexes.

query(): If a boolean query is being processed and the collection is using stem indexes then BooleanQuery() is called with the default stemming method set to what the casefold and stem environment variables have been set to. Otherwise, BooleanQuery() is called with the stemming method used on the stemmed dictionary.

mg_invf_dict.c

Set the indexed variable of stemmed_dict header to zero (0).

mg_compression_dict.c

sort_comp(): Changed the comparison function from compare() to casecompare(). NB: I have not yet determined if this is really necessary.

Additional files to ./src/text

mg_stem_idx.c

Code to create a single stem index file.

mgstemidxlist.c

Code to output the contents of a stem index file created by mg_stem_idx.

Modifications to files in ./src/scripts

Makefile.in

Fixed bug where mgbuild_4.sh was in EXEC list: changed so that mgbuild_4 was in EXEC list.

mgbuild.sh

Added environment variable do_indexed to allow the option of specifying if the collection should be built with stem indexes.

Added instructions to create the stem indexes if they are required.

mgbuild_4.sh

Added environment variable do_indexed to allow the option of specifying if the collection should be built with stem indexes.

Added instructions to create the stem indexes if they are required.

mgmerge.sh

Added environment variable do_indexed to allow the option of specifying if the merged collection should be built with stem indexes.

Added instructions to create the stem indexes if they are required. NB: The original collection must have been built with either stem indexes or with a non-casefold & non-stemmed stemming method.

�Endian Ordering

When MG is compiled on a certain platform, all collections built with MG on that platform are almost always incompatible with MG compiled on a different platform. This is due to the different byte sizes of the types in the C compiler and the way the operating system stores data types on disk: either big- or little-endian. The following outlines the changes made to be able to have a collection built on one platform but readable on another (including the platform that the collection was built on).

The changes for the functionality provided in this section are identified in-line by

[RPAP - Jan 97: Endian Ordering]

Implementation

For a collection to be writeable and readable on different platforms the two problems outline above need to be addressed, namely:

Different byte sizes for data types

Different endian orderings

The first problem is rather difficult to solve. If a collection is built with an integer size of 2 bytes, but is read by a version of MG using 4 bytes then obviously the reads of the data files will not correctly align with each other. This obstacle was overcome by placing assumptions on the bytes sizes of the types which is outlined in the Assumptions section below.

Secondly, different operating systems store data types on disk in different ways, known as the endian ordering, of which there are two: big-endian and little-endian. Big-endian stores the most significant byte (MSB) to the left, whilst little-endian stores the MSB to the right. The diagram below shows how a four byte integer is stored in the different endian orderings:

�

To overcome this problem it was decided that a collection’s data files would be stored in big-endian. This was chosen because the C routines htonl(), htons(), ntohl() and ntohs() convert a host’s unsigned long or unsigned short to network order, which is defined as big-endian, and vice versa.

New macros were defined to convert all data types used by MG to big-endian. There are two sets of these macros, one for machines that use big-endian and one for those that use little-endian. If the platform already stores values in big-endian then the macros just return the value of the variable. All that was needed was to go through all the reading and writing routines of MG and insert code to convert the contents of the variables before writing to, or after reading from, the file.

Assumptions

The assumptions made about the byte sizes of the data types are that:

an integer has the same number of bytes as a long

a float has the same number of bytes as a long

a double has twice the number of bytes as that of a long

For example, we tested on a sparc running Unix System V Release 4.0 and a pc running Linux 2.1.15 both using
gcc compiler (Unix gcc v2.7.0,
Linux gcc v2.7.2.1). The sparc is big-endian and the pc is little-endian. They all have the following data type byte sizes as defined in the table below:

Data Type�Number of Bytes��short�2��int�4��unsigned int�4��long�4��unsigned long�4��float�4��double�8��

It is assumed that the floating point types have the same IEEE definition. In the case of the sparc and pc they are both IEEE-754 compliant.

Modifications

The macros defining the endian conversion rules are defined in ./lib/netorder.h.

The files changed for the writing and reading of the collection built in big endian ordering are listed below.

./lib/filestats.c

./lib/huffman.c

./lib/perf_hash.c

./src/text/backend.c

./src/text/invf_get.c

./src/text/ivf.pass1.c

./src/text/ivf.pass2.c

./src/text/locallib.c

./src/text/mg_compression_dict.c

./src/text/mg_fast_comp_dict.c

./src/text/mg_files.c

./src/text/mg_invf_dict.c

./src/text/mg_invf_dump.c

./src/text/mg_invf_merge.c

./src/text/mg_invf_rebuild.c

./src/text/mg_perf_hash_build.c

./src/text/mg_stem_idx.c

./src/text/mg_text_estimate.c

./src/text/mg_text_merge.c

./src/text/mg_weights_build.c

./src/text/mgdictlist.c

./src/text/mgstat.c

./src/text/mgstemidxlist.c

./src/text/stem_search.c

./src/text/text.pass1.c

./src/text/text.pass2.c

./src/text/text_get.c

./src/text/weights.c

./src/images/utils.c

�NZDL Specifics

The NZDL project requires a few modifications to mgquery. They have been included in this version of MG. Changes include the output of the docnums and text mode to be formatted differently, the first line to be printed is a list of all the query terms.

The changes for the functionality provided in this section are identified in-line by

[RPAP - Feb 97: NZDL Specifics]

Implementation

The modifications made are divided into three parts as described below. These modifications are conditionally compiled by defining the named macro (eg –DPARADOCNUM) or by editing the ./src/text/Makefile.in so that the compiler flag is set with –DNZDL.

PARADOCNUM

When listing docnums (via .set mode docnums), the docnum is printed as docnum.indexnum, where docnum is the document number, and indexnum is the index number. For a level 2 index indexnum will be the same as the document number. For a level 3 index this is the paragraph number.

When printing a document, only one of doc_sepstr and para_sepstr is printed, according to the index level. The number printed with %n is always the indexnum as described above. This is all done so level 2 and 3 collections can be treated uniformly. doc_sepstr and para_sepstr should be set to the same string.

para_start is not printed.

For ranked queries on level 3 indices, all paragraphs in a matching document with positive weight are returned, which means the same document will be listed multiple times.

PARABOOLEANMATCHES

For boolean queries on level 3 indices, all matching paragraphs are returned, which means the same document will be listed multiple times.

OUTPUTSTEMMEDWORDS

After entering a boolean or ranked query the first line printed contains the list of stemmed words (except when output is to the terminal).

Modifications

backend.c

InitQuerySystem(): Added code to read in the paragraph counts into an array.

bool_query.c

BooleanQuery(): Added code to not remove duplicate documents for paragraph level searches.

mgquery.c

Added functions GetDocNumFromParaNum() and PrintDocNum().

ProcessDocs(): Modified code to print the docnums and text differently as described above.

MoreDocs(): Added code to print the stemmed terms before the results are returned.

�Merging Level 3 Inverted Files

Shane Hudson investigated the possibility of creating dynamic collections using MG. His investigation led to the merging utilities incorporated into MG 1.2. However, Shane’s project did not cater for level 3, or paragraph level inverted files.

The changes for the functionality provided in this section are identified in-line by

[RPAP - Feb 97: Level 3 Merge]

Implementation

The inverted files for paragraph level indexing are in fact the same. The only changes required were to append the paragraph counts of the temporary collection to the paragraph counts of the old collection. This process was decided to be incorporated into mg_invf_merge.

Modifications

mgmerge.sh

Added parameter [–T]. If the parameter is included then the second text pass for the building of the temporary collection is not performed (the first text pass is not done anyway) and the text merge is not performed. It is assumed that the text merge has already been performed.

Set $base to the collection name instead of assuming that the collection was located in the directory with the same name as that of he collection.

Added instructions to move the old *.invf.paragraph file to the merge *.invf.paragraph file, and instructions to move the completed merged *.invf.paragraph file to the old directory.

mg_invf_merge.c

Added pointer to paragraph file in merge_info_type data structure.

init_merge_invf(): Removed code that exits if inverted file is paragraph level. Added code to open the new paragraph file and the merged paragraph file if collection built with level 3 inverted files.

done_merge_invf(): Added code to append the new paragraph file to the merged paragraph file and to close the files.

�Decompression of the Compressed Text

When a collection is built with MG a specific-purpose mg_get may be used to retrieve and format the text (including inserting paragraph and document break characters) before the text is sent to mg_passes. This means that there are two copies of the text stored on the system—one compressed, the other uncompressed.

By being able to decompress the compressed text of a collection it is possible to recreate the entire text sent to mg_passes during the build of the collection. This has several positive side effects:

The decompressed text can be used inplace of mg_get to rebuild the collection.

The original text can be recreated and saved (if only in one file).

The original uncompressed text is no longer required.

Implementation

Many of the libraries included in MG are used for decoding the text and identifying the documents. If a *.invf.paragraph file exists then this is used for determining the number of paragraphs in each document. At the end of each document a ^B character is output. For a level 3 collection a ^C character is output at the end of each paragraph. All output is sent to STDOUT.

A new program mg_decompress_text was created to perform this decompression. See the man pages on mg_decompress_text (included at the end of this document) on how to use the program.

Note that the last character output is always a ^B to mark the end of the last document.

Modifications

The file ./src/text/mg_decompress_text was created.

Makefile.in

The compilation instructions for mg_decompress_text were added. mg_decompress_text.c was added to the SOURCES list, mg_decompress_text was added to the EXEC list and mg_decompress_text.1 was added to the MAN list.

�Inclusion of MSDOS with 32 Bit Processing Port

Bill Rodgers and Geoff Holmes at University of Waikato ported MG 1.2 to MSDOS with 32 bit processing. This port has been included with MG 1.3.

The changes for the functionality provided in this section are identified in-line by

[RPAP - Feb 97:
WIN32 Port
]

Implementation

To build a collection use the builder.exe program. It will ask for a collection name, location of source files and whether or not the collection should be built with indexes.

To query a collection use the program mgquery.exe. You specify the collection name as a parameter.

MG 1.3 has already been compiled for MSDOS and is in fact ready to use. However, if you wish to change and recompile the source code then the following set of procedures is suggested.

To compile MG 1.3 for MSDOS a C++ package is required (we used Visual C++ 4.0).

Go to a DOS prompt

Compile the source files using the make utility that comes with your compiler

make .\lib\WIN32.MAK

make .\src\text\WIN32.MAK

make .\src\images\WIN32.MAK

Copy the executables to the .\bin directory

copy .\src\text*.exe to .\bin

copy .\src\images*.exe to .\bin

NOTE: The inclusion of the port is not really up to standard. There are no options for the different ways of building a collection, and none of the scripts have been converted. The port is very specific to Bill’s and Geoff’s requirements. It is envisioned that once WINNT is stable with pipes that a fully functional port can be built.

Modifications to files in the home directory

sysfuncs.h

Included WIN32cfg.h for WIN32 instead of config.h.

Don't define SHORT_SUFFIX for WIN32.

Don't include sys/param.h for WIN32.

Define u_long and u_char if not defined.

Files added to the home directory

WIN32cfg.h

Substitutes the config.h for compiling on WIN32 systems.

Modifications to files in ./lib

Because there is no autoconf program available on the PC a static config.h file has been created for use on MSDOS. This file is called .\WIN32cfg.h. So that this file may be included instead of the one that is generated by configure the following files have been modified:

alloca.c

error.c

ftruncate.c

getpagesize.h

regex.c

rx.c

xmalloc.c

netorder.h

Defined htonl(), ntohl(), htons() and ntohs() for WIN32.

NOTE
:
 At the moment just returns same value.

perf_hash.c

Added zeroing of translate array - Not automatically done on MSDOS.

rx.c

Defined REGEX_ALLOCATE as _alloca and to use _alloca() instead of alloca() for a WIN32 compile.

timing.h

Define struct timeval for WIN32.

timing.c

Added user and system times for WIN32.

Additional files to ./src/text

WIN32.MAK

Makefile for the .\lib directory under WIN32.

Modifications to files in ./src/text

MSDOS distinguishes between text and binary files, but MG does not set this distinction when opening or creating files. All that was needed was to add a ‘b’ in the mode field. Sun and Linux system
s
 ignore the ‘b’. The following files had this modification made:

backend.c

OpenFile() and InitQuerySystem().

comp_dict.c

LoadCompressionDictionary().

ivf.pass1.c

init_ivf_1(), write_stem_file() and write_num_file().

ivf.pass2.c

open_files() anf init_ivf_2()

mg_compression_dict.c

ReadInWords() and WriteOutWords().

mg_fast_comp_dict.c

mem_for_aux_dict(), mem_for_comp_dict(), LoadAuxDict(), load_comp_dict()

and

save_fast_dict().

mg_invf_dict.c

process_files().

mg_invf_dump

process_files().

mg_invf_merge

init_merge_invf().

mg_invf_rebuild

process_files().

mg_passes.c

main().

mg_perf_hash_build.c

process_files().

mg_text_estimate

ReadInWordsStandard() and ReadInWordsSpecial().

mg_text_merge.c

init_merge_text().

mg_weights_build.c

get_NumPara(), get_StaticNumOfDocs(), GenerateWeights(),

Make_weight_approx() and Make_txt_idx_weight().

mgdictlist.c

main().

mgstat.c

ProcessDict(), ProcessStem() and ProcessStemBlk().

text.pass1.c

done_text_1().

text.pass2.c

init_text_2() and write_aux_dict().

backend.c

InitQuerySystem() - Modified qd->pathname format.

bool_parser.c

Added code to not include values.h header file for WIN32 compile.

NOTE:
 If the bool_parser.c was recreated with yacc then you will have to re-edit this file.

commands.c

Defined OPENPIPE and CLOSEPIPE macros to call the appropriate function to open and close pipes depending on o/s. Replaced _popen and _pclose with OPENPIPE and CLOSEPIPE respectively throughout the code.

environment.c

Defined STRCASECMP macro to be the case-insensitive string comparator for the appropriate o/s. Replaced strcasecmp with STRCASECMP throughout the code.

mg_files.h

Defined FILE_NAME_FORMAT to be used when creating a filename.

ivf.pass2.c

Included io.h if compiling for WIN32.

open_files() - Used FILE_NAME_FORMAT in creating filenames.

done_ivf_2() - Used _chsize() for WIN32 and ftruncate() otherwise.

mg_decompress_text.c

main() - Used FILE_NAME_FORMAT to create filenames.

mg_files.c

set_basepath() - Sets basepath to the empty string for WIN32.

make_name() - Uses FILE_NAME_FORMAT to create the filename.

open_file() - Uses FILE_NAME_FORMAT to create the filename.

create_file() - Uses FILE_NAME_FORMAT to create the filename.

mg_hilite_words.c

set_create() - Fixed bug that bzeroed the wrong amount of memory.

main() - Uses _popen() and _pclose() for WIN32.

mg_invf_rebuild

process_files() - Used FILE_NAME_FORMAT for creating filenames.

mg_passes.c

driver() - Only use getrusage() if HAVE_GETRUSAGE is defined.

mgquery.c

get_query() - Used _popen for WIN32.

SIGPIPE_handler() - signal call modified.

Defined HILITE_PAGER as mg_hilite_words.exe.

MoreDocs() - Doesn't call signal with SIGEPIPE and uses _popen and _pclose for WIN32.

query() - Calls InitQuerySystem() with different directory separator.

search_for_collection() - Uses ‘\’ instead of ‘/’ in directory structure.

main() - uses ‘\’ instead of ‘/’ to InitQuerySystem().

Additional files to ./src/text

WIN32.MAK

Makefile for the .\src\text directory for WIN32.

MGPASS.C

Incorporates a type of mg_get and mg_passes in one program. This removes the need for pipes which is unstable under WINNT.

builder.cpp

C++ program that forms the user interface to
creating a collection.

Additional files to ./src/images

WIN32.MAK

Makefile for the .\src\images directory for WIN32.

�
Term Frequencies

When a query is performed the number of

t
ime
s each term appears in the
collection can be returned.

The changes for the functionality provided in this section are identified in-line by

[RPAP - Feb 97:
Term Frequency
]

Implementation

The number of times
a
term
appears i
n the collection
is s
tored in the stemmed dictionary and is returned when the term is accessed during a query. Because the list of terms during a query contains all the words that stem to the same root as those in the query, the term list is unable to keep track of those that actually belong to the query. Hence a data struct query_term_list was created that store
d the stemming type, and the
count of
occurrences
 for all the words that stem
to the same root.

The
output of the
term frequenci
es is controlled by the
new
boolean
en
vironment variable term_freq
. It may contain any of the boolean values: off, on, false, true, no
 or
 yes
. If the term_freq variable is true then the
term freque
n
cies for each of the query terms is displayed in the following format:

<number of terms>

<term> <frequency>

<term> <fr
e
quency>

...

...

followed by the actual output of the query result.
 If the term was specified with a stemming method then the stemming method is appended to the term:

<term#stem_method> <frequency>

Modifications to files in ./src/text

A major change to the source code was the shifting of the code for
ReadTermInfo()
 in
bool_query.c
 to
query_lex()
 in
bool_parser.y
. This was required so that the information about the actual terms in the query could be obtained.

Makefile.in

Added
query_term_list.c
 to
SOURCES
 list,
query_term_list.h
 to
HEADERS
 list and
query_term_list$o
 to
BOOL_OBJS
 and
QUERY_OBJS
.

backend.h

Added pointer to the query term list in the
query_data
 data structure.

backend.c

InitQuerySystem()
 - Initialised the query term list and term list to
NULL
.

bool_parser.y

Added global static variables.

query_lex()
 - Added call to
FindWord()
 and
AddQueryTerm(
).

ParseBool()
 - Added extra parameter to pass in the query term list and to reset the query term list.

bool_parser.h

Added extra parameter to
ParseBool()
 prototype for the query term list.

bool_query.c

Removed
ReadTermInfo()
 function.

BooleanQuery()
 - Added query term list parameter to
ParseBool()
 call and removed call to
ReadTermInfo()
.

bool_tester.c

Added query term list parameter to
ParseBool()
 call.

bool_tree.c

CreateBoolTermNode()
 -
Added parameters to pass in all
the
information for
 the term entry. Passed in the
extra parameters to
AddTerm()
.

environment.c

InitEnv()
 -
 Added environment variable
term_freq
 with default
off
.

mgquery.c

Add
ed
 function
PrintQueryTermFreqs()
 to display the term frequencies.

query()
 -
 Added call to
PrintQueryTermFreqs()
 if required to print the term frequencies.

query.ranked.c

ParseRankedQuery()
 -
 Add parameter to pass in the query term list. Initialised the query term list and added

calls to
AddQueryTerm()
 to add the query term and its collection count.

RankedQuery()

-
 Called
FreeQueryTermList()
 and passed in the query term list to
ParseRankedQuery()
.

term_lists.c

AddTerm()
 -
 Added extra parameters to pass in all the information for a new term and used them to create a new term with those values.

term_lists.h

Added extra parameters to
AddTerm()
 prototype.

Additional files to ./src/text

query_term_list.h

Definitions for the
query_term_list
 data structure and prototypes for the functions defined in
query_term_list.c
.

query_term_list.c

Functions that work on the
query_term_list
 data structure.

� New Zealand Digital Library - see http://www.cs.waikato.ac.nz/~nzdl/

� See Managing Gigabytes, Witten, I.H. et al pp 146

� See Managing Gigabytes, Witten, I.H. et al pp 144

� Probably comparable to that of not recreating the weights file in mg_merge

�PAGE

�

�PAGE

�
5
�

:

:

:

:

:

:

:

:

block

3-in-4 block

blocked dictionary

offset

{

num_cases

block

3-in-4_ block

MSB

LSB

LSB

MSB

Big-endian

Little-endian

