
Web Services for Greenstone 3

A dissertation
submitted in partial fulfilment

of the requirements for the Degree
of

Master of Computing and Mathematical Sciences
at the

University of Waikato
by

ANUPAMA KRISHNAN

University of Waikato

2008



Abstract
The project on web services for Greenstone 3 was primarily implementation oriented and 
consisted  of  three  parts.  This  project  was  primarily  implementation  oriented  and 
consisted of three parts. The first involved designing and implementing a set of enhanced 
web services for Greenstone 3. The second part required implementing a Greenstone 3 
demo-client  that  would make use of the web services in  order to access  a repository 
backed by Greenstone 3. While Greenstone 2 had a demo-client that allowed end-users to 
perform tasks comparable to those possible through a Greenstone powered browser, a 
similar client had not yet been built for Greenstone 3. The final part of the project was to 
demonstrate  functional  interoperability  by  also  enabling  access  to  a  Fedora-backed 
repository of Greenstone-collection documents from within Greenstone 3’s Java-based 
client application.

There were design decisions pertaining to each part of the project. When it came to the 
web services, the questions were on what parts of Greenstone’s functionality to map into 
web services and what method definitions would be easiest for clients, in terms of the 
types of parameters and return values and the most suitable way to deal with optional 
parameters.  The  design issues  surrounding the  Java-based  client  application  were  far 
more straightforward as they were centred around how best to organise the classes and 
how to add support for Fedora and still ignore the details of which digital library is being 
used at any one time. Designing the third part of the project was more intensive. The 
Greenstone documents required custom representation in Fedora’s repository, in order to 
provide the same information as in Greenstone. It was decided to build a stand-alone 
component that could interface with Fedora’s repository on one end and with Greenstone 
3’s Java-client on the other. This meant that the intermediate component needed to know 
about Fedora’s Access web services in order to access the repository, while on the other 
end, it needed to mimic the protocol with which Greenstone communicates with the Java-
client. As such, this component—FedoraGS3—acted as a translator: converting requests 
for data sent from the client into web service calls to access Fedora, and converting data 
returned by Fedora into response messages that the client would understand. Finally, the 
FedoraGS3 component’s  functionality was integrated successfully into the Java-client, 
just  like the Greenstone 3 web services it  used to access the Greenstone repository’s 
contents.

Evaluating the three parts of this project showed up some limitations in the web services, 
which suggested changes to their design: some methods were removed while others were 
added.  The  new set  of  web  services  still  requires  further  evaluation,  before  we  can 
determine whether its API has met the goal of being general yet useful enough. Due to 
some slight differences between the way data is represented in Fedora and the way it is 
represented  in  Greenstone,  some  digital  library  services  offered  for  Fedora—such  as 
querying and browsing—worked a bit differently or required extra effort to bring it closer 
to  Greenstone’s  functioning.  Though  complete  functional  interoperability  was  not 
achieved, we had significant success. The Java-client was also successful in that it was 
able to emulate Greenstone 3’s browser interface to a considerable extent and serves as a 
good demonstration of a Java-based client for Greenstone 3 and how one may be built.

i



Acknowledgements
With  many  thanks  to  my  supervisors,  Dr  David  Bainbridge,  Dr  Dave  Nichols  and 
Professor Ian Witten, and my family.

ii



Table of Contents
 Abstract................................................................................................................................i
 Acknowledgements............................................................................................................ii
 Table of Contents..............................................................................................................iii
 List of Tables and Figures..................................................................................................v
Chapter 1. Introduction........................................................................................................1

1.1. Background...............................................................................................................1
1.1.1. Interfaces to Greenstone...................................................................................1
1.1.2. Greenstone 3.....................................................................................................2

1.2. Aims..........................................................................................................................3
1.3. Overview of Greenstone 3........................................................................................3
1.4. Objectives.................................................................................................................4

Chapter 2. System review....................................................................................................6
2.1. Digital Library Systems............................................................................................6

2.1.1. DSpace..............................................................................................................6
2.1.2. EPrints...............................................................................................................6
2.1.3. Fedora...............................................................................................................7

2.2. Web services.............................................................................................................9
2.2.1. The role of web services.................................................................................10

2.3. Interoperability.......................................................................................................11
2.3.1. The Simple Digital Library Interoperability Protocol (SDLIP).....................12

Chapter 3. An extended worked example..........................................................................13
3.1. The Query pane.......................................................................................................16
3.2. The Search results pane..........................................................................................22
3.3. The Browse pane....................................................................................................23
3.4. Displaying images..................................................................................................26

Chapter 4. System design and implementation..................................................................30
4.1. Web services for Greenstone 3...............................................................................30

4.1.1. Considering the functionality to map into web services.................................30
4.1.2. Web service APIs...........................................................................................31
4.1.3. Types of parameters and return values for the web services..........................31
4.1.4. The design stages............................................................................................35

4.2. The Java-client for Greenstone 3............................................................................41
4.2.1. Design and Implementation............................................................................41

4.3. Working with the Fedora repository.......................................................................44
4.3.1. Storing Greenstone documents in the Fedora repository................................44
4.3.2. Connecting to the local Fedora repository of Greenstone objects..................46
4.3.3. Integrating access to the Fedora repository into the Java-client.....................58

Chapter 5. Evaluation........................................................................................................59
5.1. Evaluating the web services for Greenstone 3........................................................59

5.1.1. Evaluating the design of Greenstone 3’s web service method definitions.....60
5.1.2. Using the Java-client to evaluate the design and completeness of Greenstone 

3’s Access-related web services.........................................................................63

iii



5.1.3.  Comparing  Greenstone  3’s  web  services  with  the  breadth  of  services 
provided by Fedora.............................................................................................65

5.2. The Java-client for Greenstone 3............................................................................70
5.3. The FedoraGS3 component....................................................................................70

5.3.1. Limitations......................................................................................................71
5.4. Conclusion and future work....................................................................................72

5.4.1. Suggestions for further work in this area........................................................72
 References.........................................................................................................................74
 Appendix...........................................................................................................................75

iv



List of Tables and Figures
Figure 1.1:  “A simple stand-alone site” in Greenstone 3. Image reproduced from 
“Greenstone3: A modular digital library” [8]......................................................................3
Figure 1.2: “Fedora Digital Object architectural overview”, reproduced from Fedora 
Tutorial #1 [15]....................................................................................................................7
Figure 3.1: Screenshot of the Java-client’s start-up dialog requesting the location of the 
WSDL file for Greenstone 3’s web services.....................................................................13
Figure 3.2: Screenshot of the start-up dialog requesting initialisation information required 
for connecting to Fedora’s repository................................................................................13
Figure 3.3: Screenshot of the Java Client’s main interface...............................................14
Figure 3.4: Portion of the main interface showing the available collections in the 
Greenstone repository........................................................................................................15
Figure 3.5: Portion of the main interface showing the services available for the selected 
GS2MGPPDemo collection...............................................................................................15
Figure 3.6: Screenshot of a form generated for the Text Query service of Greenstone 3. 16
Figure 3.7: Screenshot of Greenstone’s Field Query form. ..............................................17
Figure 3.8: Screenshot of Greenstone’s Advanced Field Query form...............................17
Figure 3.9: Screenshot of the Greenstone 3 browser interface’s Text Query form...........18
Figure 3.10a: Screenshot of the search form control settings available for the Greenstone 
3 browser interface’s Field Query of the GS2MGPPDemo collection through the 
Preferences page................................................................................................................18
Figure 3.10b: Screenshot of the Greenstone 3 browser interface’s Field Query form......19
Figure 3.11a: Screenshot of the search form control settings available for the Greenstone 
3 browser interface’s Advanced Field Query of the GS2MGPPDemo collection through 
the Preferences page..........................................................................................................19
Figure 3.11b: Screenshot of the Greenstone 3 browser interface’s Advanced Field Query 
form....................................................................................................................................19
Figure 3.12: The Text Query form available to users when searching Fedora’s repository
...........................................................................................................................................20
Figure 3.13: The Field Query form available to users when searching Fedora.................21
Figure 3.14: The available field search options in Fedora’s Field Query form ................21
Figure 3.15: Performing a Text Query for the term “snails” on the documents of the 
GS2MGPPDemo collection...............................................................................................22
Figure 3.16: Screenshot of browsing a sub-category (“BOSTID”) of the “organisations” 
classifier in Greenstone’s GS2MGPPDemo collection.....................................................23
Figure 3.17: Browsing the demo collection GS2MGPP by organisation in Greenstone 3’s 
browser interface. The browse classifier BOSTID has been expanded to show the top-
level documents it contains................................................................................................24
Figure 3.18: Screenshot of browsing through the Browse Titles by Letter classifier 
offered by the FedoraGS3 component’s ClassifierBrowse service ..................................25
Figure 3.19: Viewing an image from the image collection Backdrop. Right-clicking on a 
document shows a popup listing the name of the image (clicking it will reload the image 
in this case)........................................................................................................................26
Figure 3.20: For image collections that contain associated text, the text is loaded first. . 27

v



Figure 3.21: The document’s popup menu (in the Tree panel) gives access to the image27
Figure 3.22: Accessing images embedded in the contents of documents stored in Fedora 
is also accomplished with right-clicking in the Tree panel and selecting the image name
...........................................................................................................................................28
Figure 4.1: The web service operations will construct XML request messages from the 
basic data types of the input parameters and pass this on to the Message Router’s process 
method...............................................................................................................................33
Table 4.1: Listing of the Greenstone 3 web service method definitions. See also the 
Greenstone 3 Developer’s Manual [8], pp.35-52..............................................................37
Figure 4.2: The Data and GUI classes of the Greenstone’s client application..................40
Figure 4.3: The GS3WebServicesAPIA part of the Greenstone3 Client application 
handles the web service invocations..................................................................................42
Tables 4.2 and 4.3 The datastreams associated with Greenstone collection and document 
digital objects stored in Fedora..........................................................................................45
Figure 4.4: The context of the component that is to provide access to the local Fedora 
repository of Greenstone documents.................................................................................48
Figure 4.5: Design choices as to where to place the component that will facilitate custom 
access to the Greenstone documents stored in the Fedora repository...............................50
Figure 4.6: The web service invocations required to use the Fedora-GS3 component’s 
operations, were this to be placed on Fedora’s end...........................................................52
Figure 4.8: The DigitalLibraryServicesAPIA interface: to enable uniform access to both 
the Fedora- and Greenstone-backed repositories...............................................................56
Figure 4.9: How the three parts of this project are connected...........................................57
Table 5.1 Comparing the web service methods in Fedora API-A with their equivalents (if 
any) in Greenstone 3’s set of access-related web services................................................66
Table 5.2 Methods of the Fedora Management API (API-M) that have some comparable 
functionality to what’s available in Greenstone................................................................68
Table A.1: The Greenstone 3 web services Access API. Listing of web service method 
definitions..........................................................................................................................75

vi



Chapter 1. Introduction
1.1. Background
Greenstone is an open-source, cross-platform, general-purpose digital library system that 
allows users to construct digital library collections which can function in a distributed 
environment. Witten and Bainbridge cover the origins and development of Greenstone 
over its first decade in [17]. Its development started around 1996 as the New Zealand 
Digital Library (NZDL) project. It was designed with multilingual support in mind and 
supports different media content (text, audio, images, and more). Initially, the focus was 
to  make  Greenstone  a  tool  to  produce  and  distribute  humanitarian  information 
collections,  though  it  required  software  expertise  in  order  to  be  able  build  new 
collections. Over time, the aim expanded to one of making it easy for librarians and other 
end-users  who  might  not  be  IT  specialists  to  create  and  distribute  collections  with 
Greenstone.  This  led  to  the  development  of  the  Greenstone  Librarian  interface,  an 
application  for  designing  and  building  collections  and  enriching  the  contents  with 
metadata. Greenstone has been used to produce humanitarian information collections for 
the  Human  Info  NGO  and  UNESCO  that  have  been  distributed  widely.  A  major 
Greenstone  project  involved  digitising  Maori  language  newspapers  from  which  the 
Niupepa collection was created and which has been made available online.

Greenstone allows for interoperability through its:
- document  and  multimedia  plugins  that  are  used  to  ingest  many  recognised  data 

formats  into  its  repository,  as  well  as  other  digital  library  systems’  formats,  like 
DSpace; 

- plugouts, used to export Greenstone contents into a variety of standardised formats, 
like METS and MARCXML. Greenstone can also convert  its  collection  data  into 
formats specific to other digital library systems, such as DSpace and FedoraMETS 
which can be ingested by DSpace and Fedora, respectively;

- use  of  established  protocols  such  as  the  Open  Archives  Initiative  Protocol  for 
Metadata Harvesting (OAI-PMH) and z39.50.

In spite of the degree to which Greenstone promotes interoperability with other digital 
library  softwares,  Witten  and  Bainbridge noted  that  there  had  been  little  interaction 
between different digital  library projects in terms of learning from each other’s open-
source research and incorporating available solutions. 

1.1.1. Interfaces to Greenstone
Greenstone provides two distinct interactive interfaces [17]: 
- The above-mentioned Greenstone Librarian Interface (GLI), a Java-based application 

that is a powerful tool to design and create information collections. It enables one to 
add documents into a collection, import collections, export them into different media 
and formats, design metadata sets, assign and edit metadata and perform other tasks 
related  to  constructing  a  digital  library.  While  supporting  recognised  metadata 

1



formats,  Greenstone also allows end-users  the freedom to design collections  with 
metadata sets that are specific to their needs.

- The  Reader  interface,  a  Greenstone-powered  browser  interface  that  allows  users 
access  to  the  repository  content.  Digital  libraries  built  with  Greenstone—where 
metadata  forms  a  prominent  part  of  the  construction—are  fully  searchable.  The 
Reader enables users to carry out tasks such as searching Greenstone collections and 
browsing them by various categories.

1.1.2. Greenstone 3
Bainbridge, Don, et al. [3] describe the considerations that gave rise to Greenstone 3 and 
its  redesigned architecture.  To summarise,  Greenstone’s  earlier  architecture  had some 
limitations due to its design. Dynamic configuration was not supported by the runtime 
system, which had to go offline to take changes to settings into account. Client-server 
interaction was facilitated by the CORBA protocol,  with which applications  could be 
built that made use of Greenstone functionality. For instance, Greenstone 2’s Java-based 
client offered users an application interface through which they could accomplish tasks 
similar to what they could do through the Reader, its browser interface. The underlying 
communication  between  this  client  application  and  Greenstone  2  proceeded  via  the 
CORBA protocol. However, there were disadvantages to using a CORBA-based protocol 
for client-server communication in Greenstone. Minor changes to the API of operations 
provided would require significant corresponding changes elsewhere.

The developers considered a new design for Greenstone based around requirements that 
included backwards compatibility, support for dynamic configuration (at runtime, versus 
the server having to go offline), a service-centred, distributed and modular architecture 
where  the  modules  can send machine-readable  messages  such as  for  describing  their 
capabilities to clients. The Greenstone 3 project started off as a research framework that 
would  ensure  compatibility  with  Greenstone  2,  while  keeping  up-to-date  through 
adoption of improvements in technology. It was a redesign of Greenstone’s architecture 
and  was  now  implemented  in  Java  while  still  providing  all  of  Greenstone  2’s  C++ 
capabilities. Greenstone 2 continues to be developed concurrently due to its prolific use 
around the world.

Bainbridge,  Don,  et  al.  then  detail  how Greenstone  3 overcomes  a  lot  of  the  earlier 
difficulties, enabling dynamic configuration of collections and services, and the addition 
of  new content.  Its  architecture,  that  makes  this  possible,  is  organised  in  a  modular 
fashion,  where  the  network  of  modules  represents  a  digital  library.  Communication 
between the modules is achieved by passing request and response messages in XML, 
such as a ‘describe yourself’ message. Such a design also enabled remote communication 
in a distributed set-up, as XML messages can be passed between remote modules using 
the Simple Object Access Protocol (SOAP) which is used in web services. As such there 
was already some rudimentary web service support that could allow client applications to 
communicate with a remote Greenstone server by sending XML request messages.

2



Even though there was some soap-based web service support in Greenstone 3, it did not 
yet provide a set of convenient-to-use web service operations that developers of client 
applications might find easier to invoke. 

1.2. Aims
The  general  aims  of  this  project  were  to  provide  enhanced  web  services  for  the 
Greenstone 3 digital library software and build a demo-client application for Greenstone 
3  that  would  also  demonstrate  functional  interoperability  with  another  digital  library 
system.

1.3. Overview of Greenstone 3

Figure 1.1:  “A simple stand-alone site” in Greenstone 3. Image reproduced from “Greenstone3: A modular 
digital library” [8]

3



Greenstone 3 consists of a front-end, which handles the user interface side of things, and 
the back-end, which is the server (called a site in Greenstone). In Figure 1.1, the Library 
Servlet  and  the  Receptionist  module  with  its  Actions  form the  front-end.  The  other 
modules are part of the server (the two Collections along with their services, the services 
comprising  the  Collection  Formation  Service  Cluster  and  the  Message  Router).  A 
Service Cluster groups together related services—in this case the services concern tasks 
related to creating collections [3].

Greenstone 3’s central module is the Message Router, which receives requests sent from 
the  user  interface  end.  Its  main  method  is  process() which  takes  a  string  that 
represents the XML  request message to be sent to Greenstone's core,  and returns the 
response message which is also an XML string. A single XML request message sent to 
process() could encapsulate  different  types  of requests.  The Message Router  will 
receive them all and sort out the rest.  Some of the incoming requests are handled by the 
Message  Router  itself,  whereas  more  specific  ones  are  delegated  to  the  Greenstone 
server’s specialist modules. The latter send their response back to the Message Router 
which, in its turn, returns a response to the client. The Message Router is therefore the 
only interface to Greenstone’s server end which the outside world need concern itself 
with, and its process() method serves as the primary point of contact.

The  extant  web service  for  Greenstone  3  consists  of  a  single  operation—also called 
process—which is a direct mapping of the Message Router’s central method of the 
same  name.  Thus,  the  existing  web  service  operation  effectively  exposes  all  of  the 
externally-accessible  Greenstone  functionality  that  is  available  through  the  Message 
Router. 

The Greenstone 3 Developer's Manual [8] explains in detail the structure of the various 
request messages that can be sent to Greenstone 3 and of the response messages that are 
returned.  It  is  therefore  possible  for  any  programmer  who  has  worked  through  the 
Developer's Manual to make use of the original web service operation when they have 
become familiar with the format of the XML messages being passed to-and-fro, as they 
then know how to formulate the request messages. However, even though the process 
web service is already sufficient where access to all the Message Router’s capabilities is 
concerned,  it  is  rather  general.  Web  service  operations  that  map  to  more  specific, 
individual aspects of Greenstone’s functionality,  and which would be easier to invoke, 
could therefore be a useful addition. 

1.4. Objectives
This project comprised three specific objectives. These were: 
1. To provide a set of web services for Greenstone 3 that are general enough, yet useful. 

This involved:
- determining  what  aspects  of  Greenstone  3's  functionality  to  map  into  web 

services;
- deciding on the kind of input parameters and return values for the web service 

methods.

4



The web services originally available for Greenstone 3 offered a single but important 
operation. They exposed the Message Router's central process() method as a web 
service, thus giving developers of client applications direct access to Greenstone 3's 
core functionality. 

The intent behind this project's first objective was to provide a set of enhanced web 
services. Although they would ultimately be giving access to the same functionality, 
the aim was to design their methods in such a way that invoking them might at times 
be a more convenient alternative. As such, it entailed designing the method signatures 
of the web service operations. 

2. To  implement  a  client  application  in  Java  that  could  demonstrate  one  way  of 
presenting the Greenstone 3 functionality that is available through a browser interface 
in  a  GUI-based  application.  There  were  several  reasons  for  building  a  client 
application for Greenstone 3. Greenstone 2 already had a demo-client exhibiting some 
of  its  capability  from  within  a  GUI  interface.  We  wished  to  show  that  a  client 
application could be built for Greenstone 3 and to demonstrate one of several ways in 
which  this  could  be  accomplished.  (The  Greenstone  3  Developer’s  Manual  [8] 
outlines the possibilities.)

A further objective was to let the client make use of the web services for Greenstone 
3 in order to access the necessary functionality. This would simultaneously serve as a 
means to evaluate the first part of the project. 

3. To demonstrate interoperability with another digital library software by allowing the 
client application to also access a Fedora repository of Greenstone content, next to its 
working with a Greenstone-backed repository. This part of the project involved the 
following steps:
- Greenstone collection and document data needed to be represented and stored in a 

custom format in Fedora;
- deciding on the sorts of operations that would be necessary in order to work with 

a  Fedora  repository  containing  Greenstone  documents.  They  would  need  to 
provide access to information that is specific to Greenstone content;

- creating  an  intermediate  component  that  would  convert  the  Greenstone  data 
returned from accessing the Fedora-backed repository into the format understood 
by the client application (which was primarily designed to work with Greenstone-
backed repositories), in order to integrate it successfully with the same.

The  second  and  third  objectives  have  been  accomplished:  we  have  successfully 
implemented a demo-client for Greenstone 3 that is also able to interact with a Fedora-
backed repository of Greenstone content to provide end-users with a similar experience. 
Yet,  while  web  services  for  Greenstone  3  have  been  designed,  implemented  and 
improved upon after some simple evaluation, it has been hard to estimate the degree of 
success in their design. Other, more rigorous methods of evaluation—such as practical 
use cases—would go a long way towards determining how complete and useful the web 
services that have now been provided are.

5



Chapter 2. System review
2.1. Digital Library Systems
In  this  chapter  we review different  digital  library  systems,  with  emphasis  on  Fedora 
which we worked with extensively in this project in addition to Greenstone.

2.1.1. DSpace
MIT and HP Labs’ DSpace [13] is open source digital library software that runs on Linux 
and  which  is  used  for  creating  institutional  repositories  to  manage  and  preserve 
publications and research papers. These are then indexed for searching and browsing, and 
distributed on the web. Content can be in various formats (text and multimedia). DSpace 
provides a web-based interface to submit material to be included in the repository. Users 
upload the  content  along with descriptive  metadata.  Since  the  purpose  of  this  digital 
library system is very specific, it works with a predefined metadata set.1 Only the Dublin 
Core metadata set is supported2, of which only a few fields are compulsory. OAI-PMH is 
supported  in  DSpace,  which  is  a  data  provider  in  that  it  exposes  its  metadata  for 
harvesting.  Its  Manakin  project  allows  users  to  customise  the  look-and-feel  of  their 
DSpace  installation.3 Manakin  is  “an  abstract  framework  for  building  repository 
interfaces that currently provides an implementation for DSpace.” [12] Three constructs 
have been developed to achieve this: 
- The  Digital  Repository  Interface  (DRI)  XML  Schema  that  provides  an  abstract 

representation of a repository page (containing both the structural data and metadata).
- Aspects,  which  are  stand-alone  components  built  with  Apache  Coccoon,  which 

modify existing  features  or  provide  new ones  for  a  repository.  Aspects  take  DRI 
documents as input and produce the same as output allowing for 'aspect chaining' 
whereby many aspects  can  be  combined  into  the  final  page  that  is  generated  by 
incorporating one aspect after another.

- Themes, that apply XSL stylesheets to DRI documents to provide a specific look-and-
feel to a repository, collection or community.

2.1.2. EPrints
EPrints  is  an  OAI-compliant,  multi-lingual,  open  source  archive  system for  building 
digital  repositories  that  are  Open  Access,  particularly  institutional  repositories  and 
multimedia-based collections.4 “Open Access (OA) is free, immediate, permanent online 
access to the full text of research articles for anyone, webwide.”5 The EPrints repository 
software runs on Linux. Its repository can store data of various formats (from documents 
to multimedia), comes with a depositing interface that allows users to add their content 

1 http://www.dspace.org/index.php?option=com_content&task=blogcategory&id=44&Itemid=156
2 http://www.dspace.org/index.php?option=com_content&task=blogcategory&id=40&Itemid=88#standards
3 http://wiki.dspace.org/index.php//Manakin
4 http://www.eprints.org/
5 http://www.eprints.org/openaccess/

6



into  the  repository,  and  provides  browsing and searching  capability  [14].  The  recent 
EPrints  Version  3  makes  more  complex  browsing  possible.  It  also  offers  enhanced 
interoperability: the facility to export data and features (like the results of a search) to 
various standard Digital Library formats like METS and Dublin Core, web services like 
Google Earth and a number of bibliography managers [6].

Web services  for  EPrints  are  in  the  works,  and  a  tentative  API  listing  is  viewable.6 

Though  the  web  services  will  not  be  part  of  the  next  EPrints  release,  they  will  be 
available for download separately. 

2.1.3. Fedora
Fedora is software that allows one to design and build digital libraries and repositories of 
digital objects (such as documents, images and other content). It is much more general 
than  Greenstone  or  DSpace,  as  it  allows  users  to  decide  on  what  functionality  is 
necessary and implement it themselves in order to construct a customised digital library 
with its own services. Custom operations can be tied to the digital objects on which they 
act.  Next  to  its  own  internal  metadata  set,  it  has  built-in  support  for  Dublin  Core 
metadata,  of  which  some  elements  are  compulsory  or  are  otherwise  automatically 
generated. However, the general-purpose design of Fedora allows users to include other 
kinds of metadata  as well.  Fedora 2.2.1 does not  have built-in  full-text  indexing and 
search  capabilities.  That  functionality  is  implemented  separately  by  Fedora  Generic  
Search, which will be discussed further on in this section.

Figure 1.2: “Fedora Digital Object architectural overview”, reproduced from Fedora Tutorial #1 [15].

6 http://wiki.eprints.org/w/Web_Services

7



Next to its  REST-interface (web services that  are accessible in a browser via URLs), 
Fedora also exposes its public functionality using SOAP, a protocol for data-exchange 
that is used by web services. Its SOAP-based web services are split over the following 
two APIs7:
- the  Management  API,  that  deals  with  managing  the  Fedora  objects  stored  in  its 

repository. Operations such as ingesting new content into the repository and purging 
existing digital objects from it are part of the Management API;

- the  Access  API,  which  is  concerned  with  providing  access  to  the  data  that  have 
already been ingested. It includes operations such as searching on the default Fedora-
assigned  DC  metadata  of  a  digital  object,  or  retrieving  the  contents  of  a  stored 
object’s  datastreams.  Datastreams give access to the individual data cotnents of a 
digital object. For instance, if a document made up of text and associated images is 
represented by a single digital  object in Fedora, the text and images  constitute its 
datastreams.  Figure  1.2  shows the  parts  that  make  up  a  digital  object  in  Fedora, 
including datastreams.

Behavioural Definitions and Behavioural Mechanisms
Fedora does not merely allow one to store data in its repository as digital objects, but also 
to define a set of operations that are applicable to a whole class (or collection) of related 
digital objects. Such method definitions are called Behavioural Definitions or BDef in 
Fedora  and  are  represented  by  digital  objects  themselves.  A  BDef  merely  defines  a 
method and the MIME type of the input and of the output—acting rather like a Java 
interface definition in that respect. The actual implementation(s) of a BDef are provided 
by web services whose locations in the form of URLs are stored in a separate Fedora 
digital object called a Behavioural Mechanism or BMech. A BDef can be implemented 
by one or more different web services, each referenced by a BMech. The web service for 
a BMech takes a Fedora digital object of the input MIME type specified in the associated 
BDef and will transform this dynamically to produce content of the output MIME type 
also defined in that same BDef.

Through BDefs and BMechs, Fedora allows users to create repositories that store digital 
objects’ data in one (internal) format, while giving them the capability to dynamically 
convert that data to other formats, thus producing different representations of the same 
content. For instance, a BMech may apply one or more XSLT files to several XML input 
files to produce HTML files as output. Another BMech could be applied to turn the XML 
files into plain text. Thus, different views of the same digital object are possible even 
though the repository stores only a single copy (in XML, in this example) of its actual 
data content [10].

The structure of a Fedora digital object
For each digital object stored in the repository, Fedora allows one to access and view: 
- the Object’s Profile, which contains the object’s PID (persistent identifier) in Fedora.

7 http://www.fedora.info/definitions/1/0/api/

8



- its Disseminations. These are the different views of a digital object’s content that are 
generated by the object’s disseminators—the operations that can be performed on its 
content. These operations are considered part of a digital object and tied to its data as 
depicted in Figure 1.2. The disseminations page contains the default behaviours that 
Fedora  automatically  provides  for  each  digital  object,  as  well  as  any  custom 
Behavioural Definitions and Behavioural Mechanisms peculiar to it or a set of similar 
digital objects. Default behaviours include generation of the Object Profile page, the 
ItemIndex page (see below) and the Disseminations page.

- the ItemIndex. This is a list of all the datastreams associated with the digital object. 
These datastreams can be either static ones—meaning they are stored—or otherwise 
they are dynamically created by the BMechs in its Disseminations.

These three views can also be seen through Fedora’s REST interface. A digital object’s 
Object  Profile  page,  viewable  through  the  REST interface,  gives  access  to  both  the 
Disseminations and ItemIndex pages.

Fedora Generic Search
Fedora does not come with built-in search services to index the text-based contents of 
datastreams, whether full-text or user-added metadata. Rather, it only provides the ability 
to  search  the  Fedora-generated  metadata  fields—such  as  the  PID  field—and  the 
compulsory DC datastream of a digital object. As a consequence of the lack of full-text 
searching,  Fedora does not  provide web services  for  such search functionality  either. 
However,  separate  components  can  be  written  to  provide  the  same.  Fedora  Generic 
Search (FedoraGSearch)  [11]  is  one  such  external  component  that  provides  full-text 
indexing and searching for Fedora repositories. Its operations are also made available as 
web services upon installation.

2.2. Web services
Web services enable distributed computing: communication and exchange of data over 
the Internet. It is built on open standards, such as various XML formats. The use of XML 
in data exchange is advantageous since XML is a textual format that can represent any 
data  (including  data  structures).  Web  services  are  therefore  independent  of  the 
programming language or platform in which the client operates and vice-versa [7]. They 
also promote code reuse: if a web service already contains the code to execute a task that 
one’s own application needs, then there’s no need to rewrite it oneself.

Examples of web services include online currency converters, world clocks and weather 
databanks. Client applications can build their functionality on top of those provided by 
existing web services and can either stop there or turn this new composite functionality 
into web services of their own for other clients to use.

One of the protocols used in web services for the exchange of data is the XML-based 
SOAP format (Simple Object Access Protocol), where XML messages encapsulating the 
data—called SOAP messages—are passed between remote applications on a network, 
even  where  these  applications  reside  behind  firewalls.  SOAP  over  HTTP  makes 
messaging  over  the  web  possible.  Input  and  output  data  are  encoded  as  SOAP  for 

9



transfer.  SOAP-based  web  services  offer  functionality  (operations)  that  remote 
applications can invoke by passing data in the form of XML.

The  Web  Services  Description  Language  (WSDL),  which  is  also  XML-based  and 
therefore machine-readable,  describes  the location  of a  web service,  the operations  it 
offers and the types of the parameters and return values of those operations. Applications 
that wish to invoke a particular web service can download its published WSDL, look up 
the  service-endpoint  (URL  location)  of  the  web  service,  and  invoke  the  required 
operation as specified in the WSLD file [7].

Although security is an issue when it comes to web services—for instance, security has 
not been built into SOAP, yet it can bypass firewalls—an additional protocol layer can be 
added on top to minimise the usual dangers inherent in data exchange over the Internet or 
other networks. Solutions to ensure web services security include encryption and digital 
signatures, and fall under the categories of authentication (that you are indeed who you 
say you are) and authorisation (that you are recognised as someone who has the right to 
access  specific  data).  For  example,  anyone  with  a  hotmail  account  can  authenticate 
themselves in hotmail with their username and password. However:
- the same combination may not authenticate them in Gmail; 
- their username and password do not authorise their access to someone else’s hotmail 

account, even though hotmail knows who they are. This is because hotmail’s login 
procedure only authorises them to view their own mail account

Beyond  the  existing  security  measures  used  to  transmit  data  over  HTTP,  new XML 
technology standards have been developed to enable authentication and authorisation for 
web services. These standards include XML Key Management Specification (XKMS), 
Security Assertion Markup Language (SAML) and Extensible Access Control Markup 
Language (XACML) [7].

2.2.1. The role of web services
A great many companies have started making their functionality available through web 
services:
- Google provides the Google Web APIs. For instance, there’s Google’s Search API 

which client applications can invoke to provide custom search facilities. Though its 
SOAP Search web services are no longer being developed, Google offers the Ajax 
Search API instead. Client applications can embed search forms in their interface and 
use it to customise search results on their page.

- Amazon,  whose  web  service  APIs  include  Alexa  Web  Search.  There’s  also  the 
Amazon cloud web services which allow end-users to rent vast amounts of hardware 
(to perform intensive calculations, for instance).8

Among the advantages of all this is the fact that expert code is made available for public 
use—in some cases for free, at other times for a fee. Google’s Search API would have 
been  optimised  for  speed  and  would  have  been  tested.  Incorporating  the  available 
functionality,  where  appropriate,  could  save  developers  time  and  effort.  Next  to 
8 "The Death of Hardware" by Quentin Hardy for Forbes, 02/11/08, 
http://www.forbes.com/technology/forbes/2008/0211/036.html

10



functionality,  Amazon  cloud  is  giving  clients  the  use  of  a  resource—hardware. 
Developers  can  forego  trying  to  acquire  vast  quantities  of  hardware  for  themselves, 
especially when they might only need this for a one-off project or for a short period of 
time.

One role web services can play in digital libraries is to make their expert functionality 
and  data—such  as  Greenstone’s  search  services  and  publicly  hosted  collections—
available for external client applications to embed, build on or access, without clients 
having to install the software or keep local copies of the data. For example, a developer 
might  need to implement  a client  to provide a unique visual representation of search 
results retrieved from a particular Greenstone collection hosted online. Underlying their 
code would be invocations to the remotely hosted Greenstone collection’s query service 
for executing the searches. 

Web services would allow communication between a digital library system and a client 
that  are  operating  on  different  platforms  and  using  different  (web  service-enabled) 
programming languages. XML allows the client to remain ignorant about the details of 
location or implementation of the digital library system whose web services are being 
called.  For  instance,  while  Greenstone  3 is  implemented  in  Java,  a  client  application 
invoking  its  web services  could  be  written  in  Perl,  which  also  has  support  for  web 
services. This means that developers of clients for Greenstone 3 do not need to write in 
Java to  instantiate  a  Message Router  instance  in  order  to get  access to  a  Greenstone 
repository and do custom processing.  Neither  do they have to  download and include 
Greenstone source code to compile their client with.

2.3. Interoperability
The widely-used OAI-PMH is a protocol that digital library systems can follow to expose 
their metadata, which may otherwise be stored internally in a custom archival format, and 
to build services that  make use of others’  metadata.9 Though the protocol specifies a 
uniform way for various digital libraries to make their metadata available for harvesting, 
it does not specify a similarly uniform way to expose other repository content. That is, it 
does not provide for a way where document content stored in a system-specific internal 
format can be harvested so that it can be accessed by other digital library systems. OAI-
PMH is concerned with interoperability of metadata. Since repositories tend to store more 
than metadata, this does not provide complete interoperability between different digital 
library  systems  even  where  those  concerned  include  support  for  OAI-PMH  [16]. 
However, OAI has been developing the Object-Reuse and Exchange (ORE) specification 
that is intended to allow a common representation of digital objects in order to facilitate 
inter-repository exchange of and access to content.10

As mentioned earlier on, Greenstone supports interoperability by being able to import 
content stored in the formats of certain other digital library softwares, and by being able 
to export Greenstone documents into other standardised or specific formats like Fedora 

9 http://www.openarchives.org/OAI/openarchivesprotocol.html
10 http://www.openarchives.org/ore/

11



and DSpace. For instance, the StoneD tool was crafted to convert Greenstone content and 
metadata  into  DSpace’s  format  and  to  convert  DSpace  content  and  metadata  into 
Greenstone  [16].  It  is  available  through  the  Greenstone  Librarian  Interface.  More 
recently,  a tool  for exporting from Greenstone into FedoraMETS, a  format  ready for 
ingesting into Fedora,  has been written as well.  It  is  also available  through the GLI. 
Witten and Bainbridge [17] have observed how Greenstone’s “importing interface can be 
used to facilitate document exchange and interoperability between various systems: for 
example, going from DSpace to Fedora and back again—without involving Greenstone at 
all!” Bainbridge, Kaun-Yu, et al. describe how they have expanded the capabilities of the 
GLI  tool  to  act  as  a  “document  and  metadata  exchange  center”,  using  precisely  the 
importing plugins and exporting plugouts of Greenstone. Interoperability between digital 
library systems may therefore also be functional, in which case digital libraries could use 
the  operational  capabilities  provided  by  another  digital  library  system,  without 
necessarily  accessing  the  repository  contents.  Web  services  can  contribute  to  such 
interoperability as well, in that the publishing of a digital library system’s functionality is 
essentially  giving  external  applications—including  other  digital  libraries—a  way  to 
access  services  (and through them,  the  content,  if  required)  of  a  different  repository 
system.

2.3.1. The  Simple  Digital  Library  Interoperability  Protocol 
(SDLIP)

In Stanford’s SDLIP protocol, clients can send search requests to repositories over HTTP 
or CORBA transports. Clients  can directly send their  requests to any repositories that 
support SDLIP. However, repository systems need not implement SDLIP themselves. In 
such a case, another component—a Library Service Proxy—can act as an intermediary 
between client and repository and provide SDLIP support. On the proxy’s client-end, it 
implements the SDLIP protocol for returning responses, but where it connects to one or 
more repositories, it could be dealing with different protocols specific to each of them. 
Incoming  SDLIP  search  requests  are  translated  by  the  proxy  and  passed  onto  the 
repository, while the data returned are translated back into SDLIP format and sent to the 
client [1].

Bainbridge, Witten, et al. [2] explain how by implementing the SDLIP protocol using 
CORBA,  Greenstone  2  was  able  to  interact  with  an  SDLIP  client.  An  intermediate 
component,  here  called  the  Translation  server,  was  constructed  that  understood  both 
SDLIP and Greenstone  2’s  own protocols.  The  component  intercepted  requests  from 
clients and converted them into Greenstone 2’s protocol calls. The data returned from 
Greenstone was then converted into the SDLIP protocol format and sent to the client in 
response.

The third objective of this project, outlined in Section 1.4, is concerned with letting our 
Greenstone 3’s client application access a Fedora repository. Though it does not involve 
SDLIP, here a similar solution was used where an intermediate component does the work 
of  translating  between  Fedora  and  the  client  application  that  expects  Greenstone’s 
request-response protocol.

12



Chapter 3. An extended worked example
This  chapter  will  look  at  how  the  implemented  Greenstone  3  Java-client  works, 
including  the  manner  in  which  users  can  make  a  repository  (Greenstone  or  Fedora) 
active, and how they can subsequently perform tasks like choosing the collection they 
wish to work with, executing queries, viewing search results and browsing by available 
categories.

Figure 3.1: Screenshot of the Java-client’s start-up dialog requesting the location of the WSDL file for 
Greenstone 3’s web services

Figure 3.2: Screenshot of the start-up dialog requesting initialisation information required for connecting to 
Fedora’s repository

Upon starting the Greenstone 3 Java-client application, a dialog requests the user to input 
the URL of the WSDL file of the Greenstone 3 web services, as seen in Figure 3.1. In the 
first instance this location is set assuming Greenstone is installed and running locally in 
the default location, with the user free to edit this as they wish. The requested WSDL file 
is needed to establish a connection with the Greenstone 3 web services, which the Java-
client will subsequently use to access Greenstone’s functionality and repository. 

Once  the  user  clicks  OK—or has  finished modifying  the  default  text  to  point  to  the 
correct  WSDL  location—another  dialog  appears,  requesting  the  user  to  submit  the 
information  necessary  to  connect  to  the  local  Fedora  repository.  The  requested 
information consists  of the host and port  of the Fedora server,  and its  administration 
username and password as can be seen in Figure 3.2. 

13



Figure 3.3: Screenshot of the Java Client’s main interface

In the event that neither connection can be made (for instance, because the user pressed 
cancel in both connection dialogs, or if they entered invalid data or due to some other 
difficulty such as the Fedora server not running yet), the client application will exit. If a 
connection  to  one  of  the  digital  libraries  was  established  successfully,  or  if  both 
connections  were  successfully  made,  then  the  Java-client  application  window  opens 
displaying  its  main  interface,  as  shown in  Figure  3.3.  This  window consists  of  two 
sections:
- The top section is where the user can choose which digital library they want to make 

active—Greenstone or Fedora (they can switch between the two throughout). Here 
they can also select the collection they wish to work with and then the service they 
want to make use of. 

- The central portion of the window is the activity section containing the Query, Search 
Results and Browse tabbed panes.

 

14



In Figure 3.3, Greenstone is selected as the currently active digital library. 

Figure 3.4: Portion of the main interface showing the available collections in the Greenstone repository

Once the user has chosen which repository they want to work with, the list of collections 
in that repository is retrieved and displayed in the Collections drop-down box. 

In  Figure  3.4  the  user  has  clicked  on  the  Collections drop-down  box  which  shows 
Greenstone’s ‘short name’ next to it for each available collection. These are Backdrop, 
Gutenberg,  Infomine,  Paged  Images,  GS2MGDemo  (a  demo  collection  built  with 
Greenstone  2  that  uses  Managing  Gigabytes  for  compressing  and  indexing)  and 
GS2MGPPDemo which stands for “Greenstone 2 Managing Gigabytes Plus Plus”. 

The Greenstone Digital Library software allows end-users to create collections with short 
names  and  full  display  names  as  well  as  provide  short  descriptions  for  them.  This 
information is also viewable in the client application. If the selected collection has a full 
name then this is displayed in the  Full Name field beside it, otherwise the short name 
shown in the  Collections drop-down box is visible here. When the button labelled  Info 
and  located  next  to  the  Full  Name field  is  pressed,  a  small  dialogue  will  appear 
containing the brief textual description of the collection, if one is available. 

Figure 3.5: Portion of the main interface showing the services available for the selected GS2MGPPDemo 
collection

15



Upon choosing the collection they wish to access,  a list  of  all  the query and browse 
services that are offered by the selected collection is dynamically uploaded and shown in 
the Services drop-down box (Figure 3.5).

At present  all  the available  services  for  a collection  are  displayed in  the drop-down, 
though the only services that allow the user to actually work with them upon selection are 
the  Query-type  services  (Text  Query,  Field  Query  and  Advanced  Field  Query)  and 
Browse-type services (Classifier Browse). Some other services in the list—such as the 
Retrieve-type services for retrieving document structure, metadata and content and for 
retrieving  metadata  for  browsing  classification  hierarchies—are  either  invoked  upon 
executing Query-type and Browse-type services or they do not do anything in the Java-
client.

One of the available collections is GS2MGPPDemo. The services in this collection that 
users  can interact  with include  the three  Query services  and the  one Browse service 
shown in the screenshot of Figure 3.5. The others do nothing upon selection.

3.1. The Query pane

Figure 3.6: Screenshot of a form generated for the Text Query service of Greenstone 3.

16



Figure 3.7: Screenshot of Greenstone’s Field Query form. 

Figure 3.8: Screenshot of Greenstone’s Advanced Field Query form.

17



Choosing any of the Query services in the Services drop-down box will bring the Query 
tab into focus. When the active digital  library is Greenstone,  the Text  Query will  be 
available  for  collections  and,  depending  on  the  collection,  possibly  Field  Query  and 
Advanced  Field  Query.  This  query  functionality  is  provided  by  Greenstone  for  its 
collections. (The particular Query services offered for a collection depend on which ones 
were chosen when creating the collection in Greenstone.) 
When a Query service is selected, the Query tab will contain a form whose controls are 
entirely determined by Greenstone—as communicated to the Java-client in response to a 
describe request for the Query service. It is due to Greenstone 3’s describe operation for 
query services that the Java-client knows to produce query forms similar to the search 
forms of Greenstone’s browser interface.

Figure 3.9: Screenshot of the Greenstone 3 browser interface’s Text Query form.

Figure  3.10a:  Screenshot  of  the  search  form  control  settings  available  for  the  Greenstone  3  browser 
interface’s Field Query of the GS2MGPPDemo collection through the Preferences page.

18



Figure 3.10b: Screenshot of the Greenstone 3 browser interface’s Field Query form.

Figure  3.11a:  Screenshot  of  the  search  form  control  settings  available  for  the  Greenstone  3  browser 
interface’s Advanced Field Query of the GS2MGPPDemo collection through the Preferences page.

Figure 3.11b: Screenshot of the Greenstone 3 browser interface’s Advanced Field Query form.

19



In  Figures  3.6,  3.7  and  3.8  one  can  see  the  forms  the  Java-client  generates  for 
Greenstone’s  Text  Query,  Field  Query  and  Advanced  Field  Query  services  that  are 
available for the GS2MGPPDemo collection. Some of these forms contain multiple fields 
to enter search terms into, while Advanced Field Query allows the user to decide what 
Boolean operators to apply when combining the term fields.  These are similar  to the 
Greenstone  3  browser  interface’s  Query  forms.  A user  can  set  the  properties  of  the 
various  forms’  controls  just  as  they  do  in  the  Preferences  menu  of  the  Greenstone’s 
browser interface, including specifying whether they want to turn on case stemming and 
case  folding,  what  portion  of  a  document  to  restrict  searches  to,  and  how  many 
documents  to  retrieve  at  maximum.  Figures  3.9,  3.10a,  3.10b,  3.11a  and  3.11b  are 
screenshots of the Greenstone browser interface’s equivalent search forms and of some of 
the adjustments that can be made for them through the Preferences page, presented here 
for comparison. 

Figure 3.12: The Text Query form available to users when searching Fedora’s repository

20



Figure 3.13: The Field Query form available to users when searching Fedora

Figure 3.14: The available field search options in Fedora’s Field Query form 

Full-text  searching  capability  for  Fedora  was  enabled  by  installing  the  separate 
component  Fedora Generic Search and using its web services. Fedora Generic Search 
made it possible to search section-level titles as well, while document-level titles could be 
queried using Fedora’s API-A web services. A combination of these underlies the Text 
and Field Query services presented in the client application, which can be seen in Figures 
3.12 and 3.13. Both these query services are available to all Greenstone collections stored 
in  the  Fedora  repository  (these  are  the  collections  that  have  been  exported  from 
Greenstone and ingested into Fedora).  The Field Query form generated  for searching 

21



Fedora’s  repository offers  the  user  the ability  to  perform queries  on document  titles, 
document and section titles, full-text or in all three of these indexed fields. This is shown 
in Figure 3.14.

Figure 3.15: Performing a Text Query for the term “snails” on the documents of the GS2MGPPDemo 
collection

3.2. The Search results pane
When the user executes a search by pressing the long Search button at the bottom of the 
query form (which can be seen in Figure 3.8, for example),  the focus changes to the 
Search Results tab and its pane opens to show the documents retrieved as a result  of 
performing the search. The screenshot of Figure 3.15 shows how the Search results pane 
is divided into 4 panels. The left-most panel is a tree of the search results (Documents 
returned tree),  which  displays  the  list  of  top-level  documents  or  document  sections 
found.  Clicking  on an item in it  will  show the  document’s  outline  in  the  Document  
structure tree located in the panel next to it. The user can expand nodes in this second 
tree to view the document’s outline and click on any of its sections to view them. For any 
document  or  section  that  is  selected  either  in  the  Document  structure  tree or  in  the 
Documents returned tree, its contents are displayed in the main panel. Since documents 
are plain text or HTML, these are displayed—along with any embedded images they may 
contain—in the Contents panel (the bottom right panel in Figure 3.15). The metadata for 
any top-level document or any selected section thereof is shown in the Metadata panel. 

22



Figure  3.16:  Screenshot  of  browsing  a  sub-category  (“BOSTID”)  of  the  “organisations”  classifier  in 
Greenstone’s GS2MGPPDemo collection.

3.3. The Browse pane
If the Classifier Browse service is selected from the  Services drop-down box, then the 
Browse tab will become active. The Browse pane that opens as a result contains 3 panels 
and a bar of  Classifier buttons along the top, as shown in the screen capture of Figure 
3.16. 

The  Classifier buttons are for the various browseable categories in this collection (the 
buttons  correspond  to  the  classifiers  associated  with  the  currently  active  collection). 
Clicking on one of the buttons will make that classifier’s browsing structure available for 
viewing in the left-most panel, the  Browse structure tree, which displays  the selected 
browsing category’s hierarchical organisation. 
The  Browse structure tree uses a folder structure to display the top-level classifier (the 
browse category) which can be expanded to show any subcategories and then opened up 
further, all the way down to the documents in the category and their sections. Unlike in 
the Search Results Pane, there is no separate panel for viewing the document structure, 
because the Browse structure tree already shows the entire outline of documents—albeit 
in the context of the overall category that a document is found in.

Upon clicking a classifier, sub-classifier, document or subsection in the Browse structure 
tree,  the metadata  associated with that classifier  or document section is shown in the 
Metadata panel that is located at the left-bottom of the Browse pane. When a top-level 

23



document or any of its sections are clicked, their contents are displayed in the Contents  
panel in the centre of the pane. (Classifiers, being categories, have no content.)

The screenshot of Figure 3.16 shows a part of the browsing structure of the Organisations 
classifier. This classifier has sub-categories (sub-classifiers), such as the visible BOSTID. 
However, not all browsing categories contain subcategories and expand to directly reveal 
top-level documents.

Figure 3.17: Browsing the demo collection GS2MGPP by organisation in Greenstone 3’s browser interface. 
The browse classifier BOSTID has been expanded to show the top-level documents it contains.

Figure 3.17 is a screenshot of browsing the GS2MGPPDemo collection by organisation 
using Greenstone  3’s browser interface, where the selected organisation is the BOSTID 
subclassifier. This is the way the browser interface presents the same information as the 
Java-client did in Figure 3.16. Each subclassifier—like BOSTID—is shown on its own 
web page, whereas the Java-client creates an expandable node for each subclassifier.

24



Figure  3.18:  Screenshot  of  browsing  through  the  Browse  Titles  by  Letter  classifier  offered  by  the 
FedoraGS3 component’s ClassifierBrowse service 

The FedoraGS3 component we have implemented, and which we will be discussing in 
detail in the next Chapter, mediates between the Fedora repository and Greenstone 3’s 
Java-client. It provides various Greenstone-like services, such as a query service, that the 
Java-client interface knows to present in a manner similar to Greenstone’s services. One 
of  the  services  FedoraGS3  provides  is  a  simple  Classifier  Browse  service  for  the 
Greenstone documents stored in the Fedora repository.  It allows users to browse titles 
according to their first letter, as shown in Figure 3.18. 

25



3.4. Displaying images
Greenstone collections need not consist of just text-based documents such as Word and 
HTML documents. It allows users to create different kinds of data collections, including 
image collections where the documents are either images, or are scans of text documents 
that may or may not have associated OCR text.

Figure 3.19: Viewing an image from the image collection Backdrop. Right-clicking on a document shows a 
popup listing the name of the image (clicking it will reload the image in this case).

Figure 3.19 shows an example  image document  from the Backdrop collection  that  is 
solely made up of images.

In the Java-client, support for non-textual content such as the Demo Image collection in 
Greenstone is accessed through right-clicking on a document in:

- the document section in the Documents returned tree of the Search results pane,
- the top-level document in the Document structure tree of the Search results pane, 

or 
- the top-level document in the Browse structure tree of the Browse pane. 

Selecting any image listed in the context menu that subsequently pops up will load the 
image in the pane’s Contents panel. 

26



Figure 3.20: For image collections that contain associated text, the text is loaded first. 

Figure 3.21: The document’s popup menu (in the Tree panel) gives access to the image

27



The demonstration Paged Images collection (a subset of the  Niupepa collection) is an 
example of an image collection consisting of newspaper article scans, as well as scanned 
images with associated OCR text. Where OCR text is included with images, the text of 
any document  selected in the  Browse pane or  Search results  pane is  loaded into the 
Contents panel by default. Right-clicking on a document will list the associated scanned 
image in the context menu. Clicking on the image file’s name in this popup will then load 
the image. Figures 3.20 and 3.21 show an example interaction with a document from the 
Paged Images collection, where the document has both a scanned image and OCR text 
associated with it.

Figure  3.22:  Accessing  images  embedded  in  the  contents  of  documents  stored  in  Fedora  is  also 
accomplished with right-clicking in the Tree panel and selecting the image name

When it comes to documents containing  embedded images (that is, HTML documents 
containing references to images in their body), the Java-client is able to display:
• these  documents  along  with  their  images  in  its  Contents  panel.  This  is  true  for 

documents from both the Fedora and Greenstone repositories.
• the list of images associated with a document in the context menu that appears when 

the user right-clicks on the document (in the Browse pane and Search results pane’s 
Tree panels that outline structure). If the user clicks on any image name in the popup, 
the image loads in the Contents panel. So far, this works with Greenstone documents 
retrieved from Fedora, an example of which is shown in Figure 3.22.

However, the latter is not yet possible when accessing documents in Greenstone: where 
images embedded in text (HTML) documents are concerned,  the Java-client is at  this 
point unable to obtain a listing of images associated with such documents. As it is unable 

28



to list them, the context menu is not available upon right-clicking either. This will cease 
to be a problem when Greenstone is modified such that the Message Router will send the 
absolute URLs of associated files.

29



Chapter 4. System design and 
implementation

This chapter will cover the design and implementation of the three parts of this project:
• web services for Greenstone 3, 
• a Java-client application for Greenstone 3 that is to make use of them, and 
• a component to act as interface to the Fedora repository of Greenstone documents, 

which will enable Fedora access to be integrated into the client application.
At various stages of designing the three parts of the project, different design decisions 
came up and these will be covered here as well.

All parts of the project were implemented in Java 5 on Linux. The project made use of 
Greenstone 3, Fedora 2.2.1 and Fedora Generic Search11. 

4.1. Web services for Greenstone 3

4.1.1. Considering the functionality to map into web services
All the useful operations which the developers of Greenstone 3 foresaw that clients and 
end-users would wish to have access to are available through the Message Router class 
(as well as the Receptionist  classes which interface with the Message Router).  It was 
therefore decided to convert those operations that can be performed through the Message 
Router into web services.

Under  consideration,  then,  are  the  following  Message  Router  operations  (these  are 
explained in detail in the Greenstone 3 Developer’s Manual [8], pages 35-52):

• Describe-type messages—these can be sent to Greenstone Collections, 
ServiceRacks  and  Services  as  well  as  the  Message  Router  itself.  Describe 
messages  sent  to  Query  services  return  a  response  that  specifies  how  the 
corresponding  query  form should  be  presented  to  the  user.  The  responses  to 
describe messages sent to other services vary.

• System-type messages
• Format-type messages
• Status-type  messages—to  poll  the  results  of  invoking  process  type 

services (see below)
• Process-type messages, which consist of

Process-type services—called to carry out some action such as 
building or importing collections
Query-type services
Browse-type services

11 The Fedora Generic Search installation used was the slightly modified version that was downloaded from 
the  DRAMA  project  (Digital  Repository  Authorization  Middleware  Architecture).  Its  installation 
instructions are at http://drama.ramp.org.au/cgi-bin/trac.cgi/wiki/InstallingFedoraGSearch

30



Retrieve-type  services—content,  structure  and  metadata 
retrieval
Applet-type services—these process data for an applet
Enrich-type services—used to mark up text

• Page-type requests—for page generation

It should be noted that web services are not a new Greenstone Service, such as querying, 
browsing and retrieval  functionality  are.  Therefore  it  is  not  pertinent  to  inherit  from 
Greenstone 3's  ServiceRack class as suggested in the Greenstone 3 Developer’s Manual 
[8] (page 59).

4.1.2. Web service APIs
One way to present the Message Router-accessible Greenstone functionality would be to 
have a single  API of web services for it  that  would map all  the selected Greenstone 
operations.  Another  way of  organising  its  web services  would  be  to  go by Fedora’s 
example.  Fedora  has  divided  its  web service  operations  into  two separate  APIs:  one 
consisting of those that pertain to managing a repository (the Management API) and one 
for those concerned with giving access to digital objects already in the repository (the 
Access API). Greenstone 3 also has operations that fall under the ‘access’ category. For 
instance, the query, browse and retrieval services relate to accessing the contents of the 
Greenstone repository.

It was decided not to split the web service operations for Greenstone into separate API 
categories after all. Since the Greenstone web service class would instantiate a Message 
Router object to perform the underlying functions, any clients accessing both APIs would 
be instantiating two separate Message Router instances.

4.1.3. Types  of  parameters  and  return  values  for  the  web 
services

Having  decided  on  mapping  Greenstone  operations  that  are  available  through  the 
Message Router into individual web service methods, the next step was to decide on the 
types of parameters and return values.

General considerations on using data structures as web service parameters or return values
It  is  possible  for  web  services  to  return  data  structures,  or  for  clients  to  pass  data 
structures as parameters to web services. The data structures that can be passed to and 
from web services represent only data: objects with multiple fields. They do not have any 
methods  (functionality)  associated  with  them.  Functionality  is  what  web  service 
operations themselves ought to provide, while the data is what is passed back and forth 
with SOAP’s encoding format [9]. This must be borne in mind when designing the types 
of return values and parameters for web service methods. 

31



Custom  data  structures  are  considered  complex  data  types  in  SOAP.  Programming 
languages that have support for web services have the ability to map the single-field types 
like strings, integers, booleans and arrays into the associated simple data types accepted 
by SOAP. Custom data structures have multiple fields and require special processing. In 
Java’s case the data structures are allowed to be Javabeans, with an additional restriction 
on their member fields that requires them to be basic data types or Collection types. If 
these requirements are satisfied, Apache Axis—which supports web services for Java—
can use its default Bean Serializer and Deserializer to pack and unpack Javabean complex 
types that conform to these specifications. Data types that are more complex than such 
Javabeans  need to have Custom Serializers  and Deserializers  written for them on the 
server and client ends. (This is the case regardless of whether such complex data types 
are used as parameters or as return values.)

Input parameters
There are a number of options for the type of input parameters the web service operations 
can have. It can consist of:
• a data structure, containing the relevant information
• XML (string) either representing a whole request message or just the portion of a 

request message that is required by the particular operation being invoked.
• simple  types  such  as  strings,  integers,  arrays  (and  Apache  Axis  allows  for  Java 

Collection types to be passed with SOAP as well).

While complex data structures can be used as parameters to web services, this need not 
always  be  helpful.  Parameters  to  methods  can  be  many  in  number,  while  many 
programming  languages  restrict  the  number  of  return  values  to  only  one.  Therefore, 
custom data structures are a necessary consideration when it comes to designing the types 
of  return  values,  but  need  not  be  required  as  parameters  when these  can  be  equally 
handled by a sequence of simple data types. One disadvantage of using data structures as 
parameters  is  that  the  client  would  be  required  to  construct  a  data  structure  that  is 
recognised and accepted by the web services end. Next to that, if a client were to merely 
pass simple data types as parameters, instead of first constructing a data structure out of 
them, it would cut out some extra effort on the client end.

Greenstone 3’s original  process web service took an XML request message as input 
and returned the same format in response. This was a very practical and elegant choice of 
format, as XML can encapsulate any kind of well-formed and valid data. As a result, all 
the kinds of messages (corresponding to Greenstone operations calls) that the Message 
Router  is  capable  of  handling  need  only be represented  by a  single  input  parameter: 
XML. With XML as input, the contents of messages can evolve in the future to perhaps 
contain  additional  pieces  of  information  while  the  signature  of  the  core  Greenstone 
process() method  itself  need  not  change  (and  only  the  actual  processing  of  the 
request and response messages might require changes). This means that callers  of the 
process() method need not  alter  the method call  itself,  even if  some of the code 
constructing requests and parsing response messages may then be modified to deal with 

32



newly-introduced data elements [3]. However, if the new web services were to take XML 
as input, there is not much advantage gained over the existing process web service.

One of the considerations in providing the enhanced web services for Greenstone 3 was 
to try to make invoking the web service methods somewhat easier and more intuitive. 
This could be achieved if the client itself need not have to construct the XML request 
messages for such operations, but could instead delegate that activity to the appropriate 
web service operation. As such, using simple data types for parameters was thought to be 
more appropriate. The web service operation would use these parameters to construct the 
XML  request  message,  which  could  then  be  passed  on  to  the  Message  Router’s 
process() method.  Each  parameter  would  represent  an  important  piece  of  the 
information required by the particular Greenstone operation being invoked through the 
Message Router.

Figure 4.1: The web service operations will construct XML request messages from the basic data types of 
the input parameters and pass this on to the Message Router’s process method

For  example,  when  calling  Greenstone’s  describe operation  on  a  collection,  the 
corresponding web service could be invoked with a string representing the collection’s 
name.  The  describe web  service  would  then  construct  the  XML  describe 
request message and call the Message Router’s process() method, passing the 
XML as an argument. The Message Router would thereafter pass on the XML message to 
the collection that has been asked to describe itself. See Figure 4.1. This last returns an 
XML response message, which the Message Router would return to the describe web 
service operation, which would in turn pass it back to the client. 

Java-client

describe
describeCollection
describeService

documentStructureRetrieve
documentMetadataRetrieve
documentContentRetrieve

query
browse
...

Greenstone 3 web services

Greenstone

XML process(XML)
Message Router

describeCollection(String collectionName)

A describe XML 
request message is sent to 
the collection:

<request lang='en' 
type='describe' 
to='collectionName'/>

33



Return values
The possibilities for the return type of the web service operations include:
• returning the XML response message as is, or 
• returning  a  custom  data  structure/object  whose  fields  would  contain  the  same 

information as held in the response XML. 

There  are  advantages  and  disadvantages  to  returning  custom  data  types. The  major 
advantage to returning a custom data structure is that a client need not parse any XML 
data in order to retrieve the pieces of information it wants. Instead, it need but access the 
data structure’s member fields. This means that clients need not know the format of a 
response XML emanating from Greenstone. Any Java developer who has perused the 
Javadocs for the various data structures that could be returned from the web services may 
know how to start using them. On the other hand, if plain XML response messages were 
returned, clients would need to be familiar with the XML response message format laid 
out in the Greenstone 3 Developer’s Manual, in order to handle all the data elements a 
response message may possibly contain.

Since the indexing and searching of full-text in Fedora is provided by the separate Fedora 
Generic Search (FedoraGSearch) installation, the full-text searching capabilities that the 
latter  exposes  as web services  are  not  part  of  the Fedora Access  API.  While  Fedora 
Generic Search’s web services return XML response strings, the web service operations 
of  Fedora’s  APIs  return  non-XML data,  including  convenient-to-use  custom objects. 
They return complex data types where necessary and simple data types otherwise. From 
the perspective of someone developing an application that makes use of Fedora’s web 
services,  the  custom Fedora  types  are  very  easy to  work  with  since  they  require  no 
processing.

In Greenstone’s case, returning data structures would be somewhat more involved. Some 
operations can return XML representing different data depending on which Greenstone 
component the request message was sent to. For example, a describe request message 
sent  to a Query service returns XML representing the display data  for a query form, 
whereas a  describe request sent to a Browse service returns XML with a different 
internal structure and represents display data meant for top-level browse classifiers. In 
spite  of  the  operation  being  the  same  (a  describe request  sent  to  a  Greenstone 
Service), the services are different and their XML response messages are consequently 
not the same: they don’t contain all the same elements. Therefore, their response XMLs 
can not be represented by the same data structures. That is, it is not possible to represent 
all describe responses with a single data structure.

There is  a further,  if  minor,  disadvantage to returning custom data types.  Using such 
complex  data  types  for  return  values  would  involve  parsing  the  response  XML into 
individual components on the web services side. This would preclude any custom parsing 
that the client may wish to perform. For instance, a client application may not choose to 
parse all of the XML and may instead only want to retrieve a single sub-element from a 
response  message.  In  that  case,  the  web  service's  parsing  to  create  the  custom data 

34



structure  from  the  response  XML  and  passing  this  back  to  the  client  would  be  an 
unnecessary overhead. 

After much deliberating, we opted for returning the XML response message as a String 
(which is a simple data type). Although this meant that clients would have to parse the 
response  themselves,  this  choice  was  particularly  useful  when  it  came  to  integrating 
Fedora access into Greenstone 3’s Java-client, as will be discussed in Chapter 4, System 
Design and Implementation.

Even so, a small  allowance has been made for Java developers who may want to use 
Greenstone 3’s web services but who do not look forward to parsing the response XML 
themselves.  The  Greenstone  3  client  application  that  has  been  built  for  this  project 
contains  some classes  that  first  parse then encapsulate  the  information  returned from 
many of the ‘Access’ operations of Greenstone (like browse, query and retrieve). Others 
may choose to make use of these classes instead of doing the parsing themselves.

In  summary: While  Greenstone’s  existing process  web service  took an  XML request 
message and returned an XML response message, the new web services will take simple 
data  types  as  parameters  and  return  the  XML  response  message  received  from  the 
Message Router back to the client as-is.

4.1.4. The design stages
The  web services  for  Greenstone  3  were  designed  and  implemented  a  first  time  (as 
discussed in the subsection  Design Stage 1 below), after which they were evaluated as 
covered in Chapter 5, Evaluation. Taking the recommendations from the evaluation into 
account,  the  set  of  web  services  have  been  adjusted.  The  final  web  services  as 
implemented are presented in subsection Design Stage 2.

Design Stage 1
Although all  Greenstone 3 operations  that  can be accomplished  through the  Message 
Router were already available through the existing  process web service, it was thought 
useful to provide individual web service methods for at least the most frequently used 
Greenstone operations.

Since creating  web services  for Greenstone was only part  of  the project  and another 
major part was implementing a Java-client application to use the same, the main focus 
during the implementation stage was to first  create those web services that  the client 
required.  The client application was to provide some of the same functionality that  is 
already  available  through  Greenstone  3’s  browser  interface.  The  operations  under 
consideration,  therefore,  were of  the  “Access”  category,  such  as  Greenstone’s  query, 
browse  and  retrieve-type  services  for  document  content,  metadata  and  structure. 
Therefore, providing methods to ease invocation of Greenstone’s Access operations were 
the minimum that the web services needed to offer. Whether it is an acceptable minimum
—and whether the remaining (non-Access related) Greenstone operations can be left to 

35



the more general process web service operation—is a question considered in Chapter 
5, Evaluation.

While mapping the Access operations of Greenstone into web services, it was thought 
useful to overload web service methods for several Greenstone operations, such that some 
variants would accept XML parameters after all. (These methods would be available in 
addition  to  the  default  method  for  each  operation  that  was  to  take  simple  data  type 
parameters.)  The XML parameter would represent those portions of request  messages 
that were unique to the operation, rather than an entire XML request message. It was 
thought that methods with such XML parameters could prove useful for any clients that 
might already have prepared the necessary segment of an XML request message. 

Further  (different)  instances  of  method  overloading  were  used  for  some  Greenstone 
operations as well, in the expectation that clients may find invoking one of the variants 
easier  in certain circumstances. Most of these variants were designed to take optional 
parameters into account.

Table  A.1  of  the  Appendix  lists  the  web  services  implemented  in  Stage  1.  They 
correspond to the Greenstone 3 Access operations that are available through the Message 
Router.

36



Table 4.1: Listing of the Greenstone 3 web service method definitions. See also the Greenstone 3 Developer’s Manual [8], pp.35-52

Methods for sending describe-type requests to the Greenstone's Messagerouter, Collections, ServiceRacks and Services
String describe(String lang, String subsetOption);
String describeCollectionOrServiceRack(String toSC, String lang, String 
subsetOption);
String describeCollService(String collection, String service, String lang, 
String subsetOption);
String describeService(String service, String lang, String subsetOption);

Query requests for executing queries
String queryProcess(String collection, String service, String lang, 
String[] names, String[] values);

String queryProcess(String collection, String service, String lang, 
HashMap nameToValsMap);

The Hashmap parameter requires mappings from query fieldnames to 
field values. The fieldnames and fixed field values must be those 
recognised by Greenstone 3.

String simplerFieldNameQueryProcess(String collection, String service, 
String lang, HashMap nameValParamsMap);

This method’s Hashmap parameter of query fieldnames and values 
will accept the user-friendly fieldnames returned by the 
getFieldNameMappings() method as well as the abbreviations used by 
Greenstone 3.  This method also allows the user to provide field 
values like "all fields", "text", "titles", "subjects", "organisations" instead 
of Greenstone’s accepted ZZ, TX, DL, DS, DO respectively. The user 
can provide "on" or "off" for such fields as casefolding and stemming, 
instead of the expected "1" or "0". 

static HashMap getFieldNameMappings(); Hashmap of mappings from user-intelligible query fieldnames to the 
argument abbreviations Greenstone 3 uses for them. Users who wish 
to use the two regular queryProcess methods that take HashMap 
parameters, may call this method to find out what the query 
fieldnames are that Greenstone 3 accepts in order to pass the correct 
fieldname abbreviation.

Retrieve request messages for Content, Structure and Metadata retrieval for Documents and Classifiers
String retrieveDocContent(String collection, String lang, String[] 
docNodeIDs);

DocumentContentRetrieve request

String retrieveEntireDocStructure(String collection, String lang, String[] 
docNodeIDs); DocumentStructureRetrieve requestsString retrieveDocStructure(String collection, String lang, String[] 
docNodeIDs, String[] structure, String[] info);



String retrieveAllDocMetadata(String collection, String lang, String[] 
docNodeIDs); DocumentMetadataRetrieve requestsString retrieveDocMetadata(String collection, String lang, String[] 
docNodeIDs, String[] metaNames);
public String browseDescendentsOf(String collection, String 
browseService, String lang, String classifierNodeID) ClassifierBrowse  –  Structure  retrieve  for  browsing  classification 

hierarchiesString browse(String collection, String browseService, String lang, 
String[] classifierNodeIDs, String[] structureParams)
String browseMetadataRetrieveAll(String collection, String 
categoryName, String lang, String[] nodeIDs); ClassifierBrowseMetadataRetrieve – Metadataretrieve for browsing 

classification hierarchiesString browseMetadataRetrieve(String collection, String categoryName, 
String lang, String[] nodeIDs, String[] metaNames);

Operations not related to Accessing the repository
String status(String to, String language, String pid)

String reconfigure(String subset)

String reconfigureCollectionOrCluster(String name, String subset)

String activate(String systemModuleName, String SystemModuleType)
String deactivate(String systemModuleName, String 
SystemModuleType)
String format(String service)

String processTypeService(String to Hashmap params) For  example,  the  parameter  to can  be  “build/NewCollection”, 
“build/ImportCollection”. See Manual, Section 3.8.4, p. 49

String appletTypeService(String collection, String service, String 
requestType, Hashmap params)
String enrich(String service, Hashmap params, String[] nodeIDs, String[] 
nodeContents)
String pageTypeRequest(String action, String subaction, String 
language, String outputType, HashMap params)

The core process method (which can process all valid Greenstone 3 messages)

String process(String requestMessageXML); A direct mapping of the process method of Greenstone 3's 
MessageRouter.



Design Stage 2
On evaluating Stage 1 of the Design, certain improvements were suggested as described 
in Chapter 5, Evaluation. They include: 

- expanding  the  set  of  web services  to  cover  practically  all  the  major  Message 
Router operations that are possible (not just the Access-related ones), and 

- less frequent use of method overloading to reduce the number of similar methods. 
This  was  achieved  by  allowing  clients  to  pass  default  values  for  optional 
parameters, and by removing methods that took partial XML requests which were 
found to be unnecessary additions.

These changes  have been incorporated  and the final  list  of  web service operations  is 
presented in Table 4.1. 



Figure 4.2: The Data and GUI classes of the Greenstone’s client application

GREENSTONE 3 via web services

Displays
Some static methods 
that are shared by both 
BrowseDisplay  and 
SearchResultsDisplay

BrowseDisplay
A tab panel containing 
TreeStructure view that 
allows browsing
Classification hierarchies

SearchResultsDisplay
A tab panel containing a 
TreeStructure view that 
presents the results of a 
search

QueryFormData
Represents a query 
form’s <option> 
and the basics fields 
of a form’s <param>

BrowseResponseData
Parses and stores the 
data of an XML 
response from a Browse 
service

ResponseData
Parses and stores 
the data common to 
both Browse and 
Query response 
XML messages

QueryResponseData
Parses and stores the 
data of a Query service’s 
response XML message 

USER

PluginData and
MetaData
Data that are 
part of a 
Collection DocumentNodeData

Stores the data of a 
<documentNode> 
element. Represents a part 
of a Greenstone Document

ClassifierNodeData
Stores the data of a 
<classifierNode> 
element. Represents a 
Greenstone Classifier

NodeData
Represents the shared 
data and behaviour of 
<documentNode>s and 
<classifierNode>s

GS3JavaClient
The main class. Sets up the GUI. Indirectly interacts with Greenstone, as 
this is the part of the client application which initiates requests to 
Greenstone and which serves as the point of entry for incoming responses.

GUI classes

Data classes

Greenstone 3 client application

QueryForm
The panel containing 
the query form 
controls

QueryFormParam
Represents all of a 
query’s <param> 
element. As such, 
this can further 
contain subelement 
Params

CollectionData
Stores data 
returned for a 
Collection or 
ServiceRack 
describe request

ServiceData
Stores data 
returned for a 
Service 
describe 
request

QueryFormControl
Represents the GUI 
for a unit of a query’s 
form data. GUI for a 
ParamElement



4.2. The Java-client for Greenstone 3
The  browser  interface  for  Greenstone  allows  end-users  to  access  a  repository  of 
collections  and documents  by providing querying,  browsing,  and of  course document 
retrieval functionality, among others. 

The Greenstone 3 Developer’s Manual [8] discusses several alternative methods to build 
GUI applications for Greenstone 3 that will provide a user-interface equivalent to what is 
offered by a Greenstone-powered browser (page 60 of the manual,  Section 4.3 “New 
Interfaces”). One of these methods is to have the client application communicate with 
Greenstone 3’s Message Router component in order to access Greenstone’s functionality. 
One  of  our  intentions  with  this  project  was  to  have  the  client  application  access 
Greenstone 3 via the new set of web services, rather than directly communicating with 
Greenstone’s core classes. This would allow the client to simultaneously serve as a means 
for testing proper implementation of those of the web services that would be invoked (in 
that  it  would be an actual  scenario of use for  those services),  and for  evaluating  the 
breadth of operations provided. It could also help to identify any missing web services 
during development so that omissions could then be rectified.

4.2.1. Design and Implementation
Since  the  web  services  were  going  to  return  the  XML  response  emanating  from 
Greenstone, rather than parsing their elements into data structures and returning these, the 
parsing  and storing of  relevant  data  became part  of  the implementation  of  the  client 
application. The client’s functionality was first separated into two packages. The  Data 
classes were organised according to the XML response data they would parse and store. 
The  GUI classes were for visually presenting the various data (such as a listing of the 
available collections and services,  and the display of query forms, browse and search 
results).

Among the data structures that would deal with processing the XML, the most important 
were:

- The QueryResponseData and BrowseResponseData classes that would parse and 
store the XML response messages sent in response to query and browse requests. 
These  two  classes  would  maintain  a  list  of  all  the  DocumentNodes  and/or 
ClassifierNodes returned in the search results or when browsing. 

- DocumentNodeData and ClassifierNodeData—the classes that would represent a 
single  DocumentNode  and  ClassifierNode.  They  would  store  the  data  they 
obtained  from  parsing  the  <documentNode> and  <classifierNode> 
elements respectively. 

- The remaining data classes were simpler and represented  <collection> and 
<service> elements or represented Greenstone-determined form controls  for 
queries.

Figure 4.2 shows how the Data and GUI functionality of the Java-client is organised into 
Data classes (which parse and store the data in the XML response messages) and the GUI 
classes that visually present this data. The diagram also shows the main connections 
between the two. 



Figure 4.3: The GS3WebServicesAPIA part of the Greenstone3 Client application handles the web service invocations

GS3WebServicesAPIA  is the client’s interface to Greenstone operations: an intermediate class 
between the client and Greenstone 3’ web services (GS3WebServices). It deals with invoking 
the Greenstone 3 web services.

The cloud indicates that, aside from GS3WebServicesAPIA, the rest of the client application 
does not know how Greenstone 3 is accessed or how its operations are executed. From the 
client’s point of view, the class GS3WebServicesAPIA is the point of interaction with Greenstone 
3. (One could replace the GS3WebServices component and instead make direct calls to the 
Message Router from within GS3WebServicesAPIA and the client would require no changes.)

Greenstone 3 Client App

Data classes

GUI classes

GS3WebServicesAPIA

Method definitions match 
those of GS3WebServices
and methods invoke the 
corresponding web services.

Web service 
invocations

GS3WebServices Message 
Router

Greenstone 
repository

Greenstone



Invoking web services requires some extra overhead on top of what is needed for regular 
method calls. Some simple optimising techniques were used to keep down the number of 
web service invocations, the amount of parsing work and, consequently, the amount of 
data stored in the program’s memory. In general, this amounted to no more than delaying 
the parsing work until required. The decision to process only when necessary was made 
on the basis that users might not always choose to view every single result returned for a 
search  or  every  single  item available  for  browsing.  For  instance,  the  Browsing pane 
contains a tree showing the structure of the browsing categories and their subcategories 
(see Figure 3.16).  In their  turn,  these subcategories  contain documents  and document 
sections. The client application will only retrieve the necessary information when a user 
clicks on a node in the tree. If a user clicks on a category, the tree-view will expand it. It 
is then that the titles of its subcategories are retrieved by invoking the appropriate web 
service  operation  (which  itself  calls  the  underlying  Greenstone  retrieval  mechanism). 
Likewise, it is only when users click on a document that its subsections are retrieved. And 
only when a section is clicked are its contents retrieved. If a node is never clicked, further 
data  need  not  be  retrieved  nor  stored.  This  way,  the  data  structures  representing 
Greenstone’s DocumentNodes and ClassifierNodes do not need to parse and store the 
content, structure or metadata in their member fields until actually required. Likewise, 
web service calls to perform the retrieval of requested data are issued only when needed.

To  make  the  Java-client  work  with  the  web  services  without  knowing  that  it  is 
specifically dealing with web services, an intermediate class, GS3WebServicesAPIA, was 
created whose operations would handle the details of the web service invocations. Thus, 
from the point of view of the Java-client’s GUI and Data classes, it makes no difference 
whether  the  intermediate  class’  implementation  was  directly  calling  Greenstone 
functionality or whether it was going through web services in order to do so.  See Figure 
4.3.  We revisit  this  class later,  when we incorporate  access to Fedora into our client 
(Section 4.3.3).



4.3. Working with the Fedora repository

4.3.1. Storing Greenstone documents in the Fedora repository
The  third  aim  of  this  project  was  to  show  how  it  is  possible  to  support  access  to 
repositories backed by different digital library softwares (Greenstone and Fedora in our 
case), through the same client interface. One way in which this can be achieved is for 
some of the same content—collections and their documents already present in Greenstone
—to also be stored in Fedora. Fedora provides little in the way of support for ingesting 
documents in Word, PDF, etc. directly. It only accepts FOXML (Fedora Object XML) 
and FedoraMETS (a custom METS format). Fortunately,  Greenstone has the ability to 
export its contents into a variety of digital library formats [4], and is able to export to 
FedoraMETS for  ingestion  into  Fedora.  The  decision  was  made  to  use  Greenstone’s 
ability to convert its collections to FedoraMETS to populate the Fedora repository we 
would be working with. By doing so, the contents of the Fedora repository would contain 
Greenstone collections,  which makes  it  easier  to demonstrate  that  comparable  actions 
(such as browsing and retrieving a document’s structure) can be performed on the digital 
objects  stored  in  the  Fedora-backed repository  as  can  be  carried  out  on  Greenstone-
backed documents.

Since we were duplicating some of Greenstone’s contents as digital objects in Fedora, it 
was necessary to also have a way to: 
- represent the concept of Greenstone collections in Fedora;
- store the data of a Greenstone document. These include any additional metadata sets 

associated with a document beyond the default DC (Dublin Core) used by Fedora, the 
document’s hierarchical structure, individual section information including metadata 
associated with a section and section content, as well as a document’s associated files 
such as images.

Fedora allows users to arrange data that is internal to a digital object in any way they 
choose.  It  merely  depends  on  how  they  design  the  internal  structure  (the  choice  of 
datastreams) of their digital objects.

The construct of a Greenstone collection was simulated in Fedora by making use of the 
ability to assign prefixes to digital object identifiers (PIDs). Examples of PID prefixes 
include Fedora’s default  demo: and test: (or the changeme: prefix for objects that don’t 
have a registered prefix). To make Fedora recognise a custom prefix merely requires it to 
be added to the list of accepted prefixes in the repository’s configuration file. 



Tables 4.2 and 4.3 The datastreams associated with Greenstone collection and document digital objects 
stored in Fedora

Greenstone can export internally stored documents and collections into FedoraMETS format for 
ingestion into Fedora. The documents are exported with a custom structure, such that a specific 
set of datastreams become associated with the document when ingested into Fedora. Together, 
these Greenstone-specific datastreams in Fedora provide the same structure, metadata and content 
information for the document as it had in the Greenstone repository. 
Fedora identifies each datastream by its itemID.

Collection, PID = greenstone:<collectionName>
itemID 
(datastreamID
)

Notable information stored in this datastream

DC

Dublin Core metadata (XML). Every digital object in Fedora has a DC 
datastream.  In  a  Greenstone  collection  digital  object,  the  DC 
datastream identifies this digital object as a collection and may contain 
its display title (possibly in several languages).

TOC
Table of contents. Collections don’t really have anything useful stored 
in  here.  The  TOC  datastream  is  only  useful  for  digital  document 
objects.

EX XML  file  containing  the  Greenstone-extracted  metadata  associated 
with this collection.

Section1 Section content.  There is nothing stored in here for collections; this 
datastream is only of use for documents.

Document, PID = greenstone:<collectionName>-<documentID>
itemID 
(datastreamID
)

Notable information stored in this datastream

DC Dublin Core metadata that contains the (top-level) document’s title.

TOC Table of contents. XML file that outlines the document’s structure and 
shows how the document is divided into subsections.

EX
Greenstone-extracted metadata for the top-level document. It lists all 
the names of files associated with the document (which are stored in 
<gsdlassocfile> tags).

DLS DLS metadata for the top-level/entire document.

Section1

Contains the contents of the top-level document. Note the “1” at the 
end. Content for all sections and subsections of a document is prefixed 
with “Section1”. (This datastream is actually an XML file that stores 
html  content  as  regular  text—by escaping  it—within  a  <section> 
tag.)

Section1.n Contains the content of subsection n.

DC.n DC metadata for subsection  n, contains the title of subsection  n. For 
instance, DC.5.3 is the DC metadata associated with Section1.5.3.



EX.n Greenstone-extracted metadata for  subsection  n.  For example,  EX.5 
contains the EX metadata for Section1.5.

In this project,
- The prefix for all Greenstone objects ingested into Fedora became greenstone:. Since 

Fedora allows searching on PIDs using wildcards, the use of a custom PID prefix to 
designate Greenstone digital objects makes it possible to identify and retrieve just the 
Greenstone digital objects.

- A Greenstone collection would itself be represented as a digital object in Fedora. And 
like all digital objects, it could have associated metadata contained in its datastreams
—just as Greenstone’s own collections have collection-level metadata.

- All  Greenstone  collections  would  be  assigned  PIDs  of  the  form 
greenstone:<collectionName>.

- Documents  within  a  collection  would  be  ingested  with  PIDs  that  included  the 
document’s  identifier  as  well:  greenstone:<collectionName>-
<documentID>.

Each Greenstone document was also represented as a separate digital object in Fedora and 
contained  datastreams  for  associated  files,  document  structure,  content  of  sections, 
section-level  metadata,  and  document-level  metadata  including  the  top-level  DC 
datastream that is available in Fedora. The organisation of a Greenstone collection and 
document in Fedora as a set of datastreams is described in Tables 4.2 and 4.3.

Documents from a sample Greenstone collection were ingested into the Fedora repository 
in the format described above, and with it,  a digital  object  representing a Greenstone 
collection. As a result, the local Fedora repository we worked with contained a proper 
subset of the contents already in the Greenstone repository (in addition to the default 
demo: objects ingested into Fedora after installation). Not all Fedora digital objects can 
be accessed by our Greenstone client  application,  but only those that  conform to the 
Greenstone-specific format just discussed. However, using this custom format to store 
Greenstone collections and documents in Fedora facilitated access to those Greenstone 
digital objects in a manner similar to how document and collection data are obtained from 
a Greenstone repository. This meant that the client application that was to connect to the 
two repositories could be made to access both libraries in the same way. (That is, without 
having to deal with the specific details of the underlying digital library software, as this 
work is taken care of by a separate intermediate component nestled between Fedora and 
the client application which will be discussed in the following section, Section 4.3.2).

4.3.2. Connecting to the local Fedora repository of Greenstone 
objects

To connect to the local Fedora repository and access digital objects stored therein, clients 
need  to  go  through  the  web services  of  Fedora’s  Access  API  (API-A).  As  was  just 
described  in  Section  4.3.1,  the  digital  objects  we  are  working  with  are  Greenstone 
documents and collections converted into a format suitable for accessing and processing 
when stored in  the Fedora repository.  Tables  4.2 and 4.3 contain an overview of the 
custom formats in which a Greenstone document  and collection are stored in Fedora. 



Full-text  indexing  and  searching  in  Fedora  is  available  upon  installing  the  separate 
Fedora  Generic  Search  facility.  Once  it  has  been  made  to  index  the  Greenstone 
documents in the Fedora repository, its web services can be used to perform searches on 
these documents’ textual contents (as long as these are stored as plain text, HTML or 
PDF).



Figure  4.4:  The  context  of  the component  that  is  to  provide  access  to  the  local  Fedora  repository of 
Greenstone documents

The Greenstone 3 Client application 
will allow the user to connect to the 
Fedora repository and access 
documents stored in there. 

The FedoraGS3 component will need 
to provide operations similar to what 
is possible with Greenstone.

The component’s operations will be 
implemented by invoking:
Fedora’s Access API web services to 
get at the contents of Fedora’s 
repository, and 
Fedora Generic Search’s web 
services to search the full-text index 
of the Greenstone documents. 

The component’s operations should 
be tailored to work with the 
Greenstone documents and 
collections stored in Fedora’s 
repository (which are items exported 
from Greenstone into Fedora’s 
internal format). The Greenstone 
documents in Fedora have the same 
structural information as they have in 
Greenstone’s own repository. This 
can be reflected in providing similar 
operations.

The Fedora repository’s digital 
objects that the FedoraGS3 
component will work with are 
Greenstone-exported data objects. 
These have a particular internal 
structure, which is reflected in the 
sorts of datastreams available for 
each Greenstone digital object (TOC, 
EX, Section, associated files, and EX 
and DC metadata for each section).

The Lucene index stores the full-text 
index of documents in the repository.

findObjects
getDC
getDatastream-
  Dissemination
...

Fedora API-A 
web services

Java-client  User interface

Greenstone

Fedora

getCollections()

findObjects(PID=greenstone:*)

Greenstone 
documents and 
collections in the 
Fedora repository

Full-text index 
of contents of 
Fedora 
repository

gfindObjects
...

Fedora GSearch 
web services

gfindObjects("phrase")

Operations like:

getCollectionList
getCollections
getCollectionTitles
getCollectionDocuments

getDocumentStructure
getDocumentMetadata

getSectionContent
getSectionMetadata
...

FedoraGS3 Component



In order to access and process the particular kinds of data associated with a Greenstone 
digital object, we needed to build a component that was tailored to work with the specific 
structure in which Greenstone documents were stored in Fedora. Figure 4.4 illustrates the 
context of this component in terms of what it needed to do and how it should fit in the 
overall processing flow.

The  values  returned  by  each  of  Fedora’s  web  service  operations  are  custom  data 
structures—Fedora types. Fedora defines how its complex data types break down into 
simple types in an XML schema. When Fedora is installed, its web service descriptor file 
(WSDD)  contains  a  type-mapping  section  specifying  the  Javabean  serializers  and 
deserializers for the different custom Fedora types (how the various web service return 
types  map  to  the  Java  classes  that  will  deal  with  packing  and  unpacking  them  for 
transport over SOAP).

Since Java was the programming language being used, several choices were available as 
to how to invoke Fedora’s web services. Clients of Fedora can choose to invoke its web 
services in either of the following ways:

a. by  including  the  stub  classes  generated  by  Axis  and  included  in  Fedora’s 
installation  (though  slightly  modified  by  Fedora  developers  to  provide  a 
parameterised constructor). These stub classes act as the GS3WebServicesAPIA 
of Figure 4.2:  they define methods corresponding to each Fedora web service 
operation, where each method carries out the task of calling the associated web 
service operation. To clients using the stub classes, it will appear as if they are 
dealing with regular classes and that the Fedora operations are local, rather than 
being aware that they are working with web services. 

b. through the Fedora API-A web services’ WSDL file which specifies the operation 
names,  parameter  types  and  number,  and  return  types.  Choosing  this  option 
essentially entails that the client side manually writes its own ‘stub’ class to deal 
with some of the technicalities of invoking Fedora’s web service operations. It is 
similar  to  the  GS3WebServicesAPIA class  in  Figure  4.2  that  was  written  for 
Greenstone’s web services. Such a class can define methods for all the Fedora 
web services that the client will use, where each method will merely handle the 
details  of invoking the corresponding web service.  If choosing this option and 
using Apache Axis to facilitate interaction with web services, the client end may 
either manually set the names of the operations and types of parameters and return 
values, or make Apache Axis’ Service and Call objects do this work. Either way, 
the client  has do the type-mapping themselves  by registering the (de)serializer 
classes for the various Fedora types used by the web service operations.

Though Fedora’s  2.2.1  release  contains  slight  modifications  in  its  method  definitions 
compared to 2.1.1, each installation comes with updated stub classes that match with the 
corresponding web services. Therefore, since the stub classes will always remain up-to-
date and in-sync with the Fedora installation, it was decided to go with the first option of 
using  the  included  API-A stub  class  to  access  Fedora’s  web services,  as  opposed to 
manually writing equivalent classes.



Figure 4.5: Design choices as to where to place the component that will facilitate custom access to the Greenstone documents stored in the Fedora repository

a. Greenstone-end

FedoraGS3 Component:
In its own package in the Java-
client Application, or
Its operations hosted as web 
services on the  Greenstone 
Server’s services page

b. Stand-alone

FedoraGS3 Component:
Jarred up separately as FedoraGS3.jar 
or at least its own package structure, 
and/or
Even though separate (as independent 
as possible from the Client code and 
Greenstone packages), this component 
can still be downloaded along with  the 
Java-client application or with the 
Greenstone installation (or on its own)

c. Fedora-end

FedoraGS3 Component:
Expose operations as web services. 

Then add new digital objects to the 
Fedora repository for these 
operations, by creating Behavioural 
Definitions (BDefs) and Behavioural 
Mechanisms (BMechs) for them. 
The BMechs will contain the URLs 
of the FedoraGS3 web services.

The web services can be hosted off 
the Fedora Server’s services page 
(or on the Greenstone end, by 
hosting it on the Greenstone 
Server’s services page)

? ?
?

Implements operations that access 
the Fedora repository of Greenstone 
documents. Operations like:
getCollectionList
getCollections
getCollectionTitles
getCollectionDocuments

getDocumentStructure
getDocumentMetadata

getSectionContent
getSectionMetadata
browse
search
...

FedoraGS3 Component



This is where the next significant design crossroads presented itself. There were several 
places to put this component (“Fedora-GS3”) that was to serve as an interface between 
Fedora and Greenstone. See also Figure 4.5, which illustrates the following choices.
a. The component can be placed on the Greenstone 3 client application’s end, in which 

case it merely becomes part of the sets of packages making up the Java-client for 
Greenstone 3. Choosing this option would involve integrating the calls to Fedora’s 
Access web services into a separate package in the Greenstone 3 client application.

Disadvantages: Though  it  is  most  easy  to  start  implementing  the  interfacing 
component as part of the classes constituting the Java-client, it would be better were 
this component not tied to the Greenstone client application.  For instance, if there 
were other Greenstone developers who might wish to build on it, they would have to 
download the Java-client in order to make use of the Fedora-Greenstone interface, 
FedoraGS3.

b. The component can be located on Fedora’s end. As discussed in Section 2.1.3 of 
the System Review Chapter, Fedora not only allows us to store data in its repository, 
but  also  enables  us  to  store  operations that  we  can  perform on  the  data.  These 
operations need to be made available  as web services and two particular  kinds of 
digital objects need to be created for them: Behavioural Mechanisms (BMechs) that 
provide the implementation of methods defined in the Behavioural Definition digital 
objects (BDefs).
Placing our intermediate component on Fedora’s end involves: 

1. making the component’s operations available as web services, and then 
2. creating Behavioural Definitions in Fedora that define the operations (BDefs 

which store the service operations’ descriptions), 
3. creating  Behavioural  Mechanisms  in  the  Fedora  repository  which  will 

reference  the  web  services  that  implement  the  Behavioural  Definitions. 
BMechs contain the WSDL file for the web services.

If going this route, there are some further options relating to where to expose the web 
services.  The straightforward choices are to make them accessible  either from the 
Greenstone 3 web services page or from the local Fedora installation’s web services 
page (the page that links to Fedora’s Access and Management APIs).

Advantages: Next to it being a good experience to learn how to construct Fedora’s 
BDefs and BMechs,  it  makes  sense (conceptually)  for the operations that  directly 
work on Fedora’s Greenstone digital objects to be available on Fedora’s end as well. 
A client  would then invoke the component’s  operations,  which would convert  the 
Fedora  digital  object  data  into  a  Greenstone-recognised  format.  Thus,  from  the 
client’s perspective, nothing need be known about the internal datastream structure of 
the Greenstone digital objects as they are stored in Fedora.



Figure 4.6: The web service invocations required to use the Fedora-GS3 component’s operations, were this 
to be placed on Fedora’s end

Disadvantages: Clients  who  wish  to  work  with  the  Fedora-Greenstone  interface 
component would be required to first make its operations available as web services. 
Thereafter,  they will  need to ingest  the component’s  BDef as well  as the BMech 
referring to its web services into the Fedora repository they wish to access. Ingesting 
BDefs and BMechs is certainly not hard, as it can be achieved either by using the 
Fedora Admin-Client application or through calls to Fedora’s API-M web services. 
However, this extra step would require some little familiarity with Fedora itself on the 
client’s behalf.

Furthermore, there would be the overhead of going through an additional set of web 
services in order to access the Greenstone digital objects in Fedora’s repository using 
the interface component’s operations. That is, when a client program wishes to use 
the FedoraGS3 component’s  web services,  it  would first  have to  invoke Fedora’s 
API-A web services  in order to  locate  and access  the BMech associated with the 
FedoraGS3’s web services. This will give the client access to the WSDL file for the 
component’s web services. Once the WSDL file has been obtained, the component’s 
operations are available for use. From this point forward, though, two further sets of 
web service invocations are required:

1. Because  the  component’s  operations  would  have  been  exposed  as  web 
services, calling any of them involves another web service call. 

2. The component’s operations work on the Greenstone digital objects stored in 
Fedora’s  repository.  Thus,  executing  one  such  operation  will  cause  the 
component  itself  to  call  Fedora API-A (Access) web service operations  to 

Client application

BDefs

BMechs containing WSDL file for 
Fedora-GS3 web service operations

Greenstone digital objects 
(documents and collections)

Fedora Repository

Web services of custom 
operations to access and 
process Greenstone documents

getCollections
getDocumentSection
getDocumentStructure
getDocumentMetadata
getSectionContent
getSectionMetadata
...

Fedora-GS3 Component

WSDL file for 
Fedora-GS3 web 
services

Fedora API-A calls 
to access BMech 
containing WSDL

Calling FedoraGS3 
web service operations

Fedora API-A calls to 
access Greenstone 
digital objects

Datastreams and other 
data of Greenstone 
digital objects



retrieve the Greenstone digital object’s datastreams after which it will process 
and return them to the client.

Thus, if opting to turn our intended component’s functionality into BMech-referenced 
web services, a call to the Fedora API-A is needed to first access the component, after 
which two web service invocations are required for each operation of the component
—as depicted in Figure 4.6. This is as opposed to just the one web service call to 
Fedora’s Access API per operation that would be required if the component were not 
placed on Fedora’s end. 
Figure 4.6 shows how the client application must also interact with the Fedora API-A. 
This means that the client application has to establish a connection to Fedora, import 
Fedora’s custom data types (which are returned by Fedora’s web services) and be 
familiar with Fedora’s web services as well as FedoraGS3’s operations.

c. Fedora-GS3 can be considered a somewhat separate component, one that is kept a 
little  distinct  from both  Fedora  and  Greenstone.  The  intended  Fedora-Greenstone 
interface component could, for instance, be made into a Java jar file. Since it is then 
not bound to the Greenstone 3 Java-client, other clients can use it too. Upon updates 
to Greenstone 3, this jar file may be modified correspondingly and clients who wish 
to use it can download it separately.

This design option does not involve creating or using BDefs or BMechs. Therefore it 
is no more difficult to accomplish than were the component to be incorporated into 
the Greenstone 3 client application as in design option (a). Next to that, calling any of 
the component’s operations would only require invoking one set of web services: the 
Fedora API-A calls necessary to access the Fedora repository’s Greenstone digital 
objects. Finally, the Greenstone 3 client application need not make any invocations to 
Fedora’s web services—in fact,  it  need not know about Fedora at  all,  only about 
FedoraGS3.



Fedora API-A
(Fedora Access web services)

findObjects
getDatastreamDissemination
describeRepository
getObjectHistory
listDatastreams
...

FedoraConnection:  the part of FedoraGS3.jar that makes 
calls to: 
the Fedora API-A web services in order to access and return 
the datastreams unique to the Greenstone documents and 
collections stored in the Fedora repository.
the Fedora Generic Search web services in order to access 
full-text searching functionality.
FedoraGS3Connection:  built on top of FedoraConnection 
whose methods are used to retrieve Greenstone digital 
objects’ data. FedoraGS3Connection then processes this 
information to create XML response messages of the format 
that Greenstone 3 generates. Next to this, it provides methods 
that return XML describe response messages listing the 
collections stored in the repository and the ‘services’ offered 
by this Fedora-Greenstone interface component. Services 
include queries, a ClassifierBrowse for browsing titles by 
letter, document structure, content and metadata retrieval.

Diagram 4.7 FedoraGS3.jar

Fedora Generic Search 
web services

gfindObjects
...

Fedora 
repository of 
Greenstone
documents

FedoraIndex 
Lucene index of the 
contents of Fedora 
repository’s 
datastreams  

FedoraConnection 
implements FedoraGS3DL

FedoraGS3DL (interface)

getCollections
getCollectionName
getCollectionTitle
getCollectionDocs

getDC
getEX
getTOC
getDocTitle
getAssocFileBaseURL

getSection
getSectionTitle
getSectionDCMetadata
getSectionEXMetadata

getChildrenOfSection
getSubsection
browseTitlesByLetter
searchDocumentTitles
...

FedoraConnection

FedoraGS3Connection 
inherits from 
FedoraConnection
implements 
FedoraToGS3InterfaceFedoraToGS3Interface 

(interface)

getCollectionList
getServiceList
describeCollection
describeCollectionServices
describeCollectionService
describeService

getContent
getDocumentStructure
getChildren
getDocumentMetadata
getTitleMetadata
getCollectionMetadata
browseMetadataRetrieve
browse
query
...

FedoraGS3Connection

FedoraGS3.jar

GSearchConnection

search
getPidsFromSearchResult
...



We chose the 3rd route for the placement of this Fedora-Greenstone interface component. 
The  stand-alone  component  was  turned  into  a  jar-file  and  called  FedoraGS3.jar.  For 
purposes  of  clarity  and  general  good  programming  practises,  its  functionality  was 
separated into two main parts, as also depicted in Figure 4.7:

1. FedoraConnection: this  part  uses  the  Fedora  Access  API  to  make  calls  to 
Fedora’s functionality and uses Fedora Generic Search’s web services to perform 
full-text searching. 

- Through Fedora’s Access API, it will provide the functions necessary to 
obtain the various custom datastreams associated with a Greenstone digital 
object. These include the datastream for a document’s table of contents 
which  outlines  the  document’s  structure,  for  the  EX,  DC  and  DLS 
metadata of the document, the datastreams for the various sections, for the 
associated  files,  for  the  EX  metadata  of  each  section,  and  for  each 
section’s DC metadata. 

- Through  the  Fedora  Generic  Search  web  services,  it  will  provide  the 
functions necessary to do straightforward text searching and fielded text 
searching.

2. FedoraGS3Connection: this part was to serve as an adapter class—one that would 
convert the format Fedora uses to communicate the data in, into the Greenstone 
format  that  the  Java-client  understands.  It  would entail  processing  the various 
datastreams obtained through FedoraConnection and piecing them together again 
into the documentNodes  that  make up a  Greenstone document.  It  was also to 
provide services such as for browsing titles by their first letter, and text query and 
field query services. Finally, FedoraGS3Connection would contain methods that 
return the kind of XML response messages as are returned by Greenstone 3.

The FedoraGS3Connection part of the component FedoraGS3.jar is what our Java-client 
will be dealing with. 



Figure 4.8: The DigitalLibraryServicesAPIA interface: to enable uniform access to both the Fedora- and Greenstone-backed repositories

GS3WebServicesAPIA
implements 
DigitalLibraryServicesAPIA

FedoraServicesAPIA
implements 
DigitalLibraryServicesAPIADigitalLibraryServicesAPIA

describe
describeCollection
describeCollectionService
describeService

retrieveDocumentContent
retrieveDocumentStructure
retrieveDocumentChildren
retrieveDocumentMetadata
retrieveTitleMetadata

retrieveBrowseStructure 
(browse operation)

retrieveBrowseMetadata

query
getAssocFileBaseURL
setLanguage
getLanguage

Greenstone 3 
web services

Greenstone

FedoraGS3.jar

Fedora
Connection

FedoraGS3
Connection

Fedora



Figure 4.9: How the three parts of this project are connected

Greenstone 3 
web services

Greenstone

USER

Fedora

Greenstone
repository

Fedora
repository of 
Greenstone 
documents

Fedora API-A
(official Fedora 
web services)Message Router

GS3 XML request 
messages in, and 
GS3 XML response 
messages out.

Simple parameters in, to 
indicate request.
GS3 XML response 
messages returned.

Simple parameters in.
GS3 format XML response 
messages out.

Parameterized 
calls to Fedora 
Gsearch. XML 
returned.

GS3WebServicesAPIA
implements 
DigitalLibraryServicesAPIA

FedoraServicesAPIA
implements 
DigitalLibraryServicesAPIA

Data classes

GUI classes

DigitalLibraryServicesAPIA

Greenstone 3 Client App

FedoraGS3.jar
Fedora
Connection FedoraGS3

Connection
GSearch
Connection

Parameterized 
calls to Fedora 
API-A. Fedora 
types returned.

Fedora GSearch 
web services

Lucene 
index of 
repository
contents



4.3.3. Integrating  access  to  the  Fedora  repository  into  the 
Java-client

To  facilitate  a  more  general  approach  to  accessing  both  the  Greenstone  and  Fedora 
repositories,  a  Java  interface  class  was  created  in  the  client  application to  represent 
access to a generic digital  library.  This interface defined methods that would become 
common to both:

- the FedoraGS3Connection part of the FedoraGS3.jar component shown in Figure 
4.7, and 

- the GS3WebServicesAPIA class of the Java-client that is depicted in Figure 4.3 
(which interfaces with Greenstone 3’s web services). 

The new Digital Library Services Access API, DigitalLibraryServicesAPIA, would act as 
intermediary  between  the  client  application  on  one  end,  and  the  classes/components 
dealing with the two digital libraries on the other end. As such, the Java-client’s GUI and 
Data classes would not need to know which repository they were dealing with, as long as 
the  operations  defined  by  this  interface  class  were  implemented  by  both.  This  was 
accomplished by: 

• making  the  Java-client’s  GS3WebServicesAPIA class implement 
DigitalLibraryServicesAPIA, and 

• creating  FedoraServicesAPIA: a  new class in the client  application which also 
implemented  the  DigitalLibraryServicesAPIA interface  by  making  calls  to  the 
appropriate  operations  of  the  Fedora-Greenstone  interface  component 
(FedoraGS3.jar).

This is illustrated by Figure 4.8.

When implementing this step, one advantage of having chosen to make the web services 
for Greenstone 3 return the XML response messages as-is became more apparent. Now 
the  FedoraGS3Connection part of the Fedora-Greenstone interface component likewise 
contained  operations  that  returned  XML response  messages  of  the  same  format  that 
Greenstone 3’s Message Router returned. This allowed us to reuse the Java-client’s data 
classes – that is, reuse the existing processing methods that parsed Greenstone 3’s XML 
response messages and stored their data. This meant that the client application was able to 
present the data obtained from FedoraGS3.jar  to the user from within its GUI without 
any changes to the existing code.

By way of summary, Figure 4.9 shows how the 3 parts of this project (Greenstone 3 web 
services, Java-client and integrated Fedora access) are connected.



Chapter 5. Evaluation
In this project,  designing and implementing the Greenstone 3 web services, the Java-
client,  and  the  Fedora-GS3  component  received  much  of  the  focus.  Some  cursory 
evaluation  has  been  done,  though—usually  upon  integrating  the  three  parts  of  this 
project. For instance, 
 The web services implemented for Greenstone 3 mostly covered operations pertaining 

to accessing the repository. Since the Java-client only made use of the access-oriented 
Greenstone functionality (like querying,  browsing and retrieval of document data), 
the  set  of  web  services  that  were  provided  could  be  partially  evaluated  upon 
implementing this client application. 

 The FedoraGS3 component’s ability to provide the operations required by the Java-
client could be assessed when creating the Java-client’s FedoraServicesAPIA class. 
This class, which implemented the DigitalLibraryServicesAPIA interface, would call 
the appropriate FedoraGS3 methods. This meant that FedoraGS3 needed to provide 
all the functionality defined by the DigitalLibraryServicesAPIA  interface. The Java-
client  also  implemented  this  interface  for  Greenstone’s  web  services  in  the  class 
GS3WebServicesAPIA.  In  this  way,  the  interface  acted  as  an  indirect  check  that 
FedoraGS3 provided comparable functions to Greenstone 3’s web services.

 The  XML  response  messages  returned  by  the  FedoraGS3  operations  could  be 
evaluated  by  checking  whether  they  smoothly  integrated  into  the  Java-client’s 
existing  data  structures  that  parsed  and stored the  data  contained  in  Greenstone’s 
XML response messages.

5.1. Evaluating the web services for Greenstone 3
This section covers the evaluation of the web services of Design Stage 1 (Section 4.1.4), 
listed in Table A.1 of the Appendix. The ideas for improvement that came up during this 
evaluation were incorporated into Design Stage 2 (also Section 4.1.2), so that the final, 
improved list of web services for Greenstone 3 can be seen in Table 4.1.

In this section we will look at:
- Evaluating some of the design decisions related to the web services. This includes 

looking at whether the choice of simple data types as parameters and of XML 
response messages as return values posed any particular difficulties. And whether 
any drawbacks could be remedied, or the current design improved upon, through 
use of alternative data types.

- Whether exposing just the access-related operations as web services is enough—
while leaving clients to turn to the Message Router’s process web service for 
the rest of Greenstone’s functionality—or whether creating easy-to-invoke web 
services for some or all the remaining publicly-accessible Greenstone operations 
would be better.

- Comparing  the  web  services  implemented  for  Greenstone  thus  far  with  the 
breadth of operations provided by Fedora. Looking at Fedora’s own web service 



APIs  will  not  only  give  a  more  general  picture  of  the  sorts  of  functionality 
Greenstone’s  web services  could  provide,  but  also  allow a  comparison  of  the 
Greenstone access operations and those exposed by the Fedora Access API.

5.1.1. Evaluating  the  design  of  Greenstone  3’s  web  service 
method definitions

The use of simple data types for method parameters
As mentioned  in  Chapter  4  System Design  and Implementation,  the  Greenstone  web 
services use basic data types for their  parameters. When it  came to implementing the 
Java-client  which  invoked  these  web  service  operations,  passing  simple  values  as 
arguments  to  the  method calls  was  indeed easier  than  constructing  the XML request 
messages  expected by the Message Router.  As anticipated,  it  made it  easier  and less 
complex to have this part of the work taken care of by the web service itself.

Fedora’s  web  service  method  definitions  also  have  simple  data  types  as  do 
FedoraGSearch’s. Calling their web services with simple parameters (as opposed to data 
structures) from within the FedoraGS3 component was similarly easy.

Returning XML response messages from web service methods
The fact that Greenstone’s web services returned XML response messages meant that the 
implementation of the Java-client  involved writing classes to parse and store the data 
contained in the response XML. This is  because the choice of return type forced the 
parsing work to be done on the client’s side instead of by the web services. However, 
once the necessary Data classes were written for the client, its remaining classes were 
able to perform their tasks without troubling themselves about the parsing details. One 
disadvantage that inevitably follows from this is that, in spite of the Data classes taking 
care  of  the  parsing  work  for  the  rest  of  the  Java-client,  other  potential  clients  of 
Greenstone 3’s web services will have to either write their  own parsing code, or else 
include the Java-client’s Data classes.

Yet, although it would have been easier for the Java-client had the web services returned 
the required data structures instead of the XML response messages, the main problems 
mentioned in Section 4.1.3 of the Chapter on System Design and Implementation would 
still have applied: 

- some Greenstone operations can return XML representing differently structured 
data in different situations. This means that the same operations would have to be 
able to return quite different data structures at different times, had we chosen to 
return data structures instead.

- other clients of Greenstone 3’s web services may not have much use for the exact 
data types being returned (which the Greenstone 3 Java-client uses). They might 
have need for only a subset of the data and might therefore prefer to have direct 
access  to  the XML response message in  order  to  parse out just  the data  they 
require.



- If custom data types were returned, then the compiler would need to recognise the 
return types. This would require all client applications to write their own class 
definitions to map the fields in the complex data types returned. The alternative to 
this  would  require  that  other  Java-based  client  applications  include  the  Data 
classes of Greenstone 3’s Java-client by defining type-mappings to specify which 
web service return value maps to which data structure defined on the client-end.

In  comparison,  Fedora’s  own  web  services  return  custom  Fedora  types,  which  are 
certainly very convenient.  On writing the FedoraGS3 component’s  FedoraConnection 
class, which made calls to Fedora API-A, being able to use the Fedora types returned 
from the Fedora operations made the process of using the return values of web services 
simpler. However, that is because some of the underlying difficulties involved in doing 
this were smoothed away behind the scenes by Apache Axis which handled the type-
mapping and serialization of SOAP’s simple data types  into the complex objects that 
were received by the client (FedoraGS3, in our case). 

In fact, there were two specific reasons for why calling the Fedora API-A services was 
particularly easy:
1. Apache Axis generated stub classes for Fedora web services. These stub classes deal 

with  invoking the  actual  API-A (and if  required,  API-M) web services.  The  stub 
classes  correspond  to  the  one  manually  written  for  Greenstone: 
GS3WebServicesAPIA, which would similarly handle all the details of web service 
invocations.  But  whereas  the  Greenstone  3  web  services  took  simple  types  as 
parameters and returned a simple type (always a string representing an XML response 
message), the situation in Fedora’s case was actually more complex. The stub classes 
Axis generated for Fedora were able to recognise the complex types  that  the web 
service  operations  returned  because  of  the  type-mappings  specified  in  Fedora’s 
WSDD (web services descriptor file) which are set on installing Fedora. The type-
mappings specified the custom serializer and deserializer classes associated with the 
various custom Fedora types involved. Fortunately, as all this work was left to Axis 
and to Fedora’s installation process, the FedoraGS3 component—which was a client 
of Fedora API-A—did not have to be burdened with it.

2. Even though the type-mappings were sorted out and so too the classes handling 
the  custom (de)serialization  of  the  Fedora  types,  the  definitions  of  these  custom 
Fedora types needed to be included in FedoraGS3. Fedora’s administration tool—a 
GUI application that is a client of Fedora’s API-A and API-M web services—defines 
Java classes for all the required Fedora types.  (Since this admin-client  application 
ships with Fedora’s installation, it would doubtless be up-to-date with any changes to 
Fedora’s web services.) The Java classes for the Fedora types that were included in 
the Fedora admin-client were imported in FedoraGS3 in order to convert the values 
returned  from the  web  services  into  appropriate  data  structures.  (The  alternative 
would have been to write our own data structures to map all the fields defined by each 
Fedora type  and adjust the type  mappings in the WSDD.) Just  as our FedoraGS3 
component  used the Fedora admin-client’s  Fedora types  to map the complex data 
types returned from Fedora’s web services, others may choose to use the data classes 



of  Greenstone  3’s  Java-client  to  process and store  the data  in  the XML response 
messages returned from Greenstone 3’s web services.

Unlike Fedora, and rather like Greenstone, FedoraGSearch returns XML data—in string 
form. There appear to be two intentions behind using XML return values in their case:

1. Clients can apply an XSLT transformation to convert the XML for display. For 
instance,  FedoraGSearch’s  XML  response  for  its  search  operation 
gfindObjects represents the results of a search. By using an XSLT file, this 
can be turned into a different XML file or into XHTML for displaying the search 
results formatted for user-viewing.

2. The XML can be dealt with directly by client applications in any other way they 
see fit (no XSLT need be applied). For instance, clients can do custom parsing to 
obtain the data they want and then may choose to store or present that data.

(At least,  the second explanation above is the way in which FedoraGS3 made use of 
FedoraGSearch’s search operation.)

The advantage of returning an XML response from web services is that developers may 
immediately see the structure and data contents of the XML. This transparency in the 
information conveyed means that developers can choose to parse the response XML to 
retrieve only the elements of data they require. This was certainly the case with us when 
FedoraGS3 parsed  only PIDs  out  of  the  long XML response message  returned  from 
gfindObjects. All the data is there and clearly presented in the response XML—just 
as it would have been in custom data structures were these used—but with the additional 
advantage that only the simple data type of string is returned. No custom (de)serialization 
is required and no type-mapping is necessary.

While it was helpful to receive custom data structures from Fedora API-A operations, it 
makes equal sense in FedoraGSearch’s case and that of Greenstone 3’s web services that 
they return XML to the client.12 

A small improvement has suggested itself. To help Java-based developers along, the Data 
classes in Greenstone 3’s Java-client can be turned into a separate jar file that all clients 
(including the Java-client itself) can import and work with if they choose. By making 
these  Data  classes  available  separately  as  well  as  in  the  Java-client  installation,  they 
become a stand-alone component just like the FedoraGS3.jar. In this way, developers of 
any  Java-based  clients  of  Greenstone  3’s  web  services  who  would  like  to  leave  the 
parsing to the existing Data classes, need not download the Greenstone 3 Java-client itself 
in order to access them.

12 Personal communication by Eric, Chu-Hsiang in January 2008. Eric is a research student developing an 
application  using  Greenstone  3  functionality. He  was  informed  about  the  way  its  web  services  were 
designed:  how various  operations  available  through  the  Message  Router’s  process() method  were 
mapped into individual web service operations, and the fact that these operations would take simple data 
types as parameters instead of XML request messages, while they would still return the XML responses. He 
was asked his opinion on whether he would find the simple data types for parameters helpful, and whether 
he preferred data structures to be returned instead of XML response messages. He approved of the choice 
of simple data types as parameters, and said that he preferred the XML to be returned. He specifically noted 
that he would not find return values that were complex data types (data structures) helpful.



Method overloading
As can be seen in Table A.1 of the Appendix, which lists the implemented web service 
methods for Greenstone 3, a lot of method overloading was used in order to provide end-
users with alternative ways of calling an operation as may suit their circumstance. 
Although having many variants for a single Greenstone operation may simplify some of 
the  work  for  clients,  some  operations  have  as  many  as  five  variants  (e.g.  the  query 
operation) that essentially accomplish the same thing. 

The  web  services  for  Fedora  and  FedoraGSearch  do  not  use  method  overloading. 
Programmatically  specifying  default  values  for  parameters,  so  that  a  single  method 
definition may suffice instead of many, is not possible in Java as it is in C++. Even so, 
Fedora and FedoraGSearch overcome this discrepancy by allowing clients to pass null or 
the empty string as default values for optional parameters. The web services will then set 
these internally to some meaningful fixed value or ignore. One disadvantage to this is that 
developers still need to know beforehand that they can pass null or the empty string for 
some parameters—something that is certainly not apparent from inspecting the WSDL 
when other documentation is unavailable—but after some trial and error one can work 
this out (as was necessary when using FedoraGSearch’s web services during this project). 
Fedora and FedoraGSearch’s way of coping with optional parameters may be a way to 
avoid too many instances of method overloading in the web services for Greenstone, even 
if not all of the overloaded methods can be dispensed with. 

Greenstone’s web services of Design Stage 1 (Section 4.1.4) included operations  that 
returned a String enumerating the specific set of values accepted for certain parameters, 
which developers can resort to when they do not know what is required. Instead, we can 
have one single help operation that returns a string describing how to invoke certain other 
web service operations (such as those with optional parameters). This help method can 
also indicate to developers the occasions where Greenstone clients may pass null, or the 
empty string, or some other default value as parameters instead.

5.1.2. Using  the  Java-client  to  evaluate  the  design  and 
completeness of Greenstone 3’s Access-related web services

The list of intended web services were decided upon beforehand and most of the method 
definitions  (especially the list of parameters)  were designed first.  The Java-client was 
written thereafter. Implementation of some of the web service operations was left until 
the point had been reached where the client application needed those operations, in order 
to make sure that, at each stage, the web services thus far implemented worked in unison 
with the evolving client code that worked with them. As such, the client application was 
mostly built around Greenstone 3’s web services. Even so, it  was possible to perform 
some  minor  evaluation  as  to  whether  the  available  web  services  and  their  method 
definitions were suitable for the client as per their initial design or whether they could be 
made even easier to invoke. This section will cover such findings.



Initially, the client made direct method calls to the Java class whose methods would soon 
be exposed as web services (GS3WebServices). Whenever that worked fine, that class’ 
public  methods  were re-exposed as  web services  and the client  was  redirected  to  go 
through the web services instead.  This step afforded some confirmation that the web 
services were indeed functioning as they should—that is, that they were working just as 
before, when the local class GS3WebServices’ methods were called instead. 
Next to that, the list of proposed web services proved sufficient for the Java-client (or 
rather, more than sufficient, as discussed below). The number and types of parameters –
of those methods that the client application invoked—were convenient to use.

A  couple  of  improvements  did  suggest  themselves  during  this  early  phase  of 
implementing the client application:
• Due to method overloading, there were more method variants available for a single 

Greenstone operation than the Greenstone 3 client application needed. Some of the 
variants were only slightly different from the one the client made use of. It took some 
consideration as to whether to reduce such variants to one method or leave them all 
in, as it was conceivable that another client might opt for the alternative variant to the 
one used by the Java-client. In the end, it was considered on a case-by-case basis. 
- For example,  the  query operation is  mapped into a web service method that 

takes  two arrays:  one  for  the  query field  names  and  the  other  for  the  values 
associated with those fields. Another web service method for the same  query 
operation takes a HashMap containing mappings of field names to field values 
instead.  This  last  version  of  the  operation  was  used  by  the  Java-client,  even 
though it’s possible that another client may find using the first-described version 
easier.

- On the other hand, some of the many variants  of the describe operation were 
found to be near duplicates of others, and left out of the redesign of Design Stage 
2 (Section 4.1.4).

• For some Greenstone operations, however, there were additional method variants that 
looked like they might not be required by the Java-client after all—in any situation. 
These  mostly  happened  to  be  the  kind  where  one  of  the  web  service  method’s 
parameters received a proper segment of an XML request that contained just the data 
particularly  required  by  the  underlying  Greenstone  operation.  The  web  service 
method  that  was  being  invoked  would  construct  the  rest  of  the  request  message 
around that XML segment. Methods like this that take parameters in XML format 
might be superfluous after all. Continuing with the example for the query operation, 
there are method variants for the same that take an XML string. This XML would 
contain the query field names and field values in a format that can readily be inserted 
into  an  XML request  message  to  be  sent  to  the  Greenstone  Query  process-type 
operation.

After  implementing  the  FedoraGS3  component,  the  DigitalLibraryServicesAPIA Java 
interface  was  conceived  of  and  incorporated  into  the  Java-client.  This  interface  was 
implemented by both the Java-client’s FedoraServicesAPIA and GS3WebServicesAPIA 
classes and defined just the set of methods that the Java-client needed to access both 
Fedora  and  Greenstone  in  a  consistent  manner.  The  DigitalLibraryServicesAPIA 



specified far fewer methods than were designed for Greenstone 3’s web services. In many 
respects,  its more concise listing of the minimum operations that were expected from 
both digital libraries was better (less confusing) than the far larger number offered by 
Greenstone  3’s  web  services.  The  method  definitions  of  DigitalLibraryServicesAPIA 
gave  ideas  on  further  limiting  the  set  of  web  services.  There  would  still  be  some 
additional methods offered by Greenstone 3’s web services beyond those required by the 
Java-client, while a few listed in DigitalLibraryServicesAPIA would not be represented. 
And some of the parameters may be slightly different between them (for instance, many 
of  the  web  service  methods  would  still  take  a  language parameter,  while  in 
DigitalLibraryServicesAPIA  the  setLanguage() method  would  be  the  only  one 
concerned with language). Overall, though, the DigitalLibraryServicesAPIA served as a 
good guide in redesigning Greenstone 3’s web services to a “more general but useful” set.

5.1.3. Comparing  Greenstone  3’s  web  services  with  the 
breadth of services provided by Fedora

Comparing Fedora’s web services with those implemented for Greenstone may prove a 
useful way to evaluate the latter’s  web services since both are software used to build 
digital libraries with. Therefore, in spite of Fedora being more general when it comes to 
designing digital libraries, the two may be somewhat comparable when one considers the 
overall functionality each offers. Any web service operations that are present in Fedora 
and whose equivalents are missing in Greenstone 3’s set of web services, can serve as a 
reason to consider incorporating something similar in the latter (where they are offered by 
Greenstone 3 itself).

The two sets of web services offered by Fedora are the Management and Access APIs 
(API-M and API-A). The first deals with managing the repository and includes operations 
for such processes as ingesting / adding digital  objects into the Fedora repository and 
purging / deleting them from it. The second API is concerned with giving clients access 
to the existing digital objects in the repository.

Section 5.1.1, which was on evaluating the web service method definitions, had already 
compared the types of the parameters and return values that Greenstone’s web service 
methods used with those used by the Fedora and Fedora Generic Search APIs. What 
remains is to compare the breadth of services offered by the last two with those made 
available for Greenstone 3. First to be considered are the Access-focussed operations of 
Fedora and Fedora Generic Search, as these are the sorts of operations that have thus far 
been exposed as web services for Greenstone 3.

Fedora Generic Search provided the built-in search services for full-text and user-added 
metadata that Fedora lacked. Therefore, Fedora Generic Search’s web services will be 
considered  along with those  offered  by Fedora’s  Access  API,  in  order  make  a  more 
complete comparison of the public operations that can be performed on Greenstone and 
Fedora repositories.



Table  5.1  Comparing  the  web  service  methods  in  Fedora  API-A  with  their  equivalents  (if  any)  in 
Greenstone 3’s set of access-related web services

Fedora API-A Greenstone 3’s Access web services
describeRepository describe (for the MessageRouter itself)

describeCollection
describeServiceRack
getBaseUL

findObjects
resumeFindObjects
gFindObjects of Fedora Generic Search
browseIndex of Fedora Generic Search

query
browse

getDatastreamDissemination retrieve operations:
documentContentRetrieve
documentStructureRetrieve
documentMetadataRetrieve

(getAssocFiles 
This is meant to return the list of files 
associated with the document that are 
specified in the metadata for the document 
root’s. Once Greenstone 3 is made to leave 
the GSDLAssocFile metadata in the 
response message, the getAssocFiles web 
service method should work.)

getDissemination 
This may return a stored (static) datastream 
or else a dynamically generated one. Either 
way, a datastream associated with the object 
is returned.
In the second case, the requested 
dissemination will apply the appropriate 
BMech associated with the object to the 
stored datastream which transforms it into 
another format. The result is then returned. 

There is no complete equivalent, but it is 
partially covered by the retrieve 
operations.

Some of the additional functionality might 
possibly be compared to applying the 
transformation that is specified by a 
format-type response message to the 
documents retrieved. Format-type 
request messages are sent to the applicable 
Greenstone service (such as query) and they 
return XML defining how to transform a 
document to present its contents for that 
service. (The XML may be XSLT or 
Greenstone Format, GSF. The latter needs 
to be converted into XSLT first.) This is 
explained in the Greenstone 3 Developer’s 
Manual, p.42 [8].

getObjectHistory Not applicable, since Greenstone 3 does not 
do versioning of contents



getObjectProfile
Basic information on the digital object: some 
Fedora-specific metadata fields (like PID) 
and URLs for the object’s Dissemination 
Index and Item Index.

No direct equivalent, but the document’s 
identifier and other Greenstone-specific 
metadata fields associated with a document 
can be obtained with 
documentMetadataRetrieve

listDatastreams No real equivalent. However, sending a 
describeCollection to the collection will 
also list the retrieve services provided for 
it. 
A documentStructureRetrieve 
message on a document-root requesting all 
the descendants will return a response listing 
all the internal and leaf document nodes.
A documentStructureRetrieve will list 
the associated files, if any.

listMethods
Lists the method definitions for all the 
possible disseminations that can be run on 
the specified digital object

describeCollectionServices
This lists the functionality (the services) 
available for all documents in the specified 
collection.

The available behaviours (functionality) for a 
collection’s documents are specified by 
sending a describeService request to all 
services of the collection.

Table 5.1 lists the access-related web services of Fedora and Fedora Generic Search next 
to any comparable ones in Greenstone 3’s web services. Where none is applicable (for 
instance, if it does not apply to Greenstone 3’s data model), this is stated. The table shows 
how most of the operations provided by the Fedora API-A have some sort of comparable 
methods in Greenstone 3’s web services, while some have no real equivalents. The table 
also  shows  that  the  functionality  provided  by  Fedora  Generic  Search  web  service 
methods  gFindObjects and  browseIndex have corresponding operations  in  the 
web services of Greenstone 3.

One discrepancy highlighted by the preceding Table 5.1 is that Greenstone 3’s format-
type message operation had not yet been mapped into a web service. 



Table 5.2 Methods of the Fedora Management API (API-M) that have some comparable functionality to 
what’s available in Greenstone

Fedora API-M methods Somewhat comparable Greenstone 3 
functionality

addDatastream
addDisseminator
ingest

addDocument Service
buildCollection Service
importCollection Service
These services are available by sending process-
type messages to the Message Router.

export export.pl Perl script

purgeDatastream
purgeDisseminator
purgeObject

(The deactivate operation on Collections and 
Service Clusters or individual Services do not delete 
collections.) 
The Greenstone Librarian interface application gives 
users the ability to delete a site’s collections.

getObjectXML
XML metadata datastreams associated 
with a digital object will be included in the 
data returned, but content datastreams 
will not be

DocumentMetadataRetrieve

getDatastream
getDatastreams
getDisseminator
getDisseminators

retrieve operations:
documentMetadataRetrieve 
documentContentRetrieve 
documentStructureRetrieve

modifyDatastreamByReference
modifyDatastreamByValue
modifyDisseminator
modifyObject

The Greenstone Librarian Interface application 
gives users the ability to edit collection data

Though  many  of  Fedora’s  API-A  operations  offer  behaviour  comparable  to  what’s 
possible via Greenstone 3’s Message Router, the differences with Fedora’s API-M are 
more  numerous.  The  Fedora  API-M  web  services  methods  for  which  there  is  no 
equivalent Greenstone functionality are: 
describeUser, compareDatastreamChecksum, 
getDatastreamHistory, getDisseminatorHistory, getNextPID, 
setDatastreamVersionable, setDatastreamState and 
setDisseminatorState. 



Many of  these concern  versioning.  The Fedora web services  for  which  some sort  of 
comparable functionality exists in Greenstone (even if not all of them are as yet available 
through interaction with the Message Router) are shown in Table 5.2.

Is an Access API sufficient for Greenstone 3?
Since  this  project  involved  building  a  Java-client  alongside  the  web  services  for 
Greenstone 3, the implementation stage became more focused on the parts of Greenstone 
3’s  functionality  that  similar  client  applications  would  require:  the  operations  for 
accessing the contents of the repository, such as those dealing with querying, browsing 
and retrieving data. Though it is likely that the main objective of most clients  would 
concern accessing the documents stored in a Greenstone-backed digital library, it is quite 
possible that some would want to give end-users the ability to carry out the remaining 
operations made available by the Message Router. For instance, Table 5.1 showed that 
the format-type message may be useful to provide. Some of the remaining operations 
are related to managing the repository while there is no particular category for the others. 
Although no  individual web services had been implemented in Design Stage 1 for the 
remaining  Message  Router-facilitated  Greenstone  3  operations,  they  could  still  be 
accessed—but only via  the original  process web service,  which requires  clients  to 
construct request messages themselves. 

The original process web service operation was complete when it came to mapping all 
the Greenstone 3 operations that are offered through the Message Router. In comparison, 
the web services that were implemented during Design Stage 1 of this project were more 
focussed on enabling easier access to Greenstone’s repository. The question that came up 
is whether it may be useful after all to map more of the remaining Greenstone operations 
into easy-to-invoke web services, or whether having convenience methods for just the 
Access-related operations is enough.

The fact that another digital library software like Fedora exposes all its major operations 
as individual web services—rather than just those related to accessing the repository, i.e. 
the  API-A—means  that  it  anticipates  that  all  of  them could  potentially  be  useful  to 
clients. Although Greenstone’s core functionality was already public due to the Message 
Router’s process method being mapped as a web service, the convenience of invoking 
the  distinct  methods  offered  by  the  Fedora  APIs  provides  a  compelling  argument  in 
favour of creating individual web service methods for the major Greenstone operations 
remaining  to  the  Message  Router.  Even  though  clients  may  not  need  to  use  some 
operations as frequently as others, providing stand-alone web service methods for each 
will ensure that clients can call them if they ever need to, while still having the benefit of 
invoking  them with  simple  parameters  (instead  of  constructing  the  request  messages 
themselves).13

13 Personal communication by Eric, Chu-Hsiang in January 2008. This research student—who had earlier 
provided his view on the design of the web service method definitions—is implementing a statistical tool 
making use of Greenstone 3’s functionality. At one point he wished to reconfigure the Message Router 
dynamically  (without  having  to  shut  down  the  Greenstone  server).  The  reconfigure operation  is 
actually available by sending a reconfigure system-type request message to the Message Router. The 
fact that a developer working with Greenstone 3’s capabilities did need his program to access a system-



5.2. The Java-client for Greenstone 3
The Java-client was not meant to, nor does it, reproduce the complete functionality of the 
browser interface for Greenstone 3. Its purpose is rather to serve as an example GUI-
based application that would demonstrate one of the ways (as indicated in the system’s 
Developer’s  Manual,  [8])  in  which  a  client  program  for  Greenstone  3  could  be 
constructed. As a consequence, usability studies evaluating the intuitiveness of use of the 
client’s interface are for the most part out of scope.

As per its current implementation, the Java-client does enable users to perform the basic 
operations that are possible through the browser interface, as could be seen in Chapter 3, 
Extended Worked Example. For instance, the query forms generated by the application 
are in  accordance with what  is  specified  by the  describe response message 
returned by the Greenstone 3’s Query services. As such, they display the same or similar 
form controls as are presented by Greenstone 3’s browser interface.

The Java-client  part  of the project  has achieved the objective laid  out  for it,  without 
requiring any significant modifications, except one. As mentioned in Section 5.1.1, one 
of the ideas that came up when evaluating the web services was to package the Data 
classes, originally created for the Java-client’s use, into their own separate jar file. This 
way, other developers, if they ever have need for it, can download the jar separately and 
let it to do the parsing of the response messages returned from Greenstone 3’s Access-
related operations.

5.3. The FedoraGS3 component
As  already  mentioned  in  Section  4.3.3  of  the  System  Design  and  Implementation 
Chapter,  the decision to make Greenstone 3’s web services return the XML response 
messages  emanating from Greenstone’s  Message Router  turned out  to  be very useful 
when it came to integrating Fedora access into the client.  The data returned from the 
FedoraGS3 component was of the same specific XML response message format as those 
returned by Greenstone 3’s various services—the message format for query, browse, and 
document content, structure and metadata retrieve. As such, the existing parsing and data 
storage classes on the Java-client’s end were able to work with Fedora’s XML response 
messages without requiring modification. As a result, it turned out to be quite an easy 
process to integrate the FedoraGS3 component into the Java-client. 

Upon  inserting  the  intermediate  DigitalLibraryServicesAPIA interface  and 
FedoraServicesAPIA class in the Java-client (see Figure 4.8), the prime objective of the 
third part of the project was accomplished as well: a single user-interface working with 
repositories backed by two separate digital library systems.

Even  though  the  Greenstone  3  Java-client  requires  only  those  parts  of  FedoraGS3’s 
functionality  that  are  made  available  through  the  Java-client’s  DigitalLibrary-
type message after all, indicated that such operations might also prove useful to map into stand-alone web 
service methods (even if they might not always be invoked as frequently as the Access-related ones).



ServicesAPIA interface, the FedoraGS3 component provides a great many more public 
methods  in  its  FedoraConnection,  FedoraGS3Connection and  GSearchConnection 
classes. Being general and useful, these methods were kept public in order to give access 
to the component’s intermediate processing functions. For instance, the public methods 
of  class  FedoraConnection  return  raw values  that  have  not  yet  been  built  up  into  a 
Greenstone XML response message. Perhaps some of  these  methods  may  be  useful  in 
the future or for other Java-based developers, in which case the FedoraGS3.jar file can be 
included.

5.3.1. Limitations
There  have been  some impediments  to  achieving  complete  functional  interoperability 
between Greenstone 3 and Fedora. 

The Fedora repository contained Greenstone document and collection data stored in a 
custom format such as would allow the FedoraGS3 component to easily access and return 
requested data to clients in the same format as Greenstone 3’s XML response messages 
(see Tables 4.2 and 4.3). However, in spite of representing the internal storage format of 
Fedora’s  Greenstone  documents  in  this  convenient  manner,  there  was  some disparity 
between how searching Greenstone 3 repositories worked compared to how searching 
worked in Fedora’s case. A Greenstone document in Fedora is a digital object identified 
by its  Fedora PID, while  a  document’s  section  contents  are  presented as  datastreams 
within the document digital object where each section is identified by its datastream ID. 
When performing a search using FedoraGSearch’s web services, the PIDs of the digital 
objects wherein the search term occurred are returned. That is, the FedoraGSearch search 
operation does not return the section (datastream) IDs of the texts containing the search 
term, but rather the higher-level document IDs (PIDs). This has the disadvantage that 
clients will not be able to present the end-user with the exact section of a document that 
contains their search term, but rather the overall document containing the section where it 
is  to  be  found.  This  is  unlike  Greenstone,  where  searches  can  be  made  to  return 
documentNodes identifying sections in which the search terms are found.

While  Greenstone  provides  search  facilities  on a  collection  basis,  searching  within  a 
‘collection’ in Fedora using Fedora Generic Search requires the FedoraGS3 component to 
filter the PIDs of the Greenstone digital objects returned for a search by the requested 
collection’s name. Fedora Generic Search allows one to search on a PID prefix or limit 
search results to a PID prefix, but searching on a digital object’s PID no longer works if 
the collection name is appended to the PID prefix. For example, to search for Greenstone 
documents in the Fedora repository within the gs2mgdemo collection would not work 
were  we  to  search  for  PIDs  that  are  prefixed  by  greenstone:gsmgdemo(*)  or 
similar. However, Fedora Generic Search does allow searches to be performed on the 
recognised PID prefix of  greenstone. This means that the FedoraGS3 component is 
forced to restrict  the search results  afterwards to those PIDs containing the necessary 
collection name.
Fedora’s metadata search also exhibited some unexpected behaviour. Its allows one to 
search the DC title metadata field, for instance, and one can specify wild cards to match 



regular expressions. The Browse service we provided for Fedora would allow users to 
browse titles in a collection according to their first letter. However, Fedora’s metadata 
search would retrieve all titles containing any words that started with the requested letter, 
rather than returning what we expected: titles where the first word started with the letter. 
Of  course,  this  problem was easily overcome by filtering  the  result-set  that  Fedora’s 
metadata search returned to just those that started with the letter we want.

5.4. Conclusion and future work
Two  of  the  project’s  objectives  have  clearly  been  met:  a  demo-client  has  been 
implemented for Greenstone 3 that also integrates access to a Fedora repository. 

The main objective of designing and implementing a set of web services for Greenstone 3 
that are both general and useful enough has at least been partially accomplished, in that 
web services have been provided that cover the operations available through the Message 
Router’s  process() method. Detailed evaluation of the web services would help to 
assess the extent to which this objective has been achieved. Evaluations performed so far 
in this project on the web services using the Java-client (which we built to make use of 
those same web services) can not be considered entirely objective.  They nevertheless 
managed to provide some suggestions for improvement. The web services provided for 
Greenstone 3 were also considered alongside those offered by Fedora and Fedora Generic 
Search in terms of: 

- how they dealt  with optional parameters (method overloading versus accepting 
default values),

- the types of parameters and return values they made use of, 
- the ease of invocation and ease of use of return values, and
- the breadth of digital library operations provided. 

Though comparisons between Fedora, Fedora Generic Search and Greenstone 3’s web 
services were indeed useful in identifying  whether the choice of parameter  types  and 
return types  was sensible,  such  a  comparison  does  not  give  enough feedback on the 
usefulness of the web services themselves. Fedora and Greenstone are in some respects 
quite  different  digital  library  systems,  hence  there  might  not  be  a  great  amount  of 
similarity  between  their  functionality  and,  consequently,  between  their  web  services. 
Even so, this preliminary comparative evaluation did suggest some beneficial changes to 
the design of the web services, including reasons for exposing more of Greenstone’s core 
functionality as web services than merely the operations pertaining to granting access to 
the  repository.  These  were  taken  into  account  in  the  re-implementation  of  the  web 
services.  Some  variations  of  overloaded  methods  were  ultimately  found  to  be 
unnecessary and were removed as a result.

5.4.1. Suggestions for further work in this area
Additional means of evaluating Greenstone 3’s web services could include considering 
existing applications that make use of Greenstone’s capabilities behind-the-scenes and try 
to rewrite those parts of their code that directly invoked Greenstone by replacing them 



with calls to appropriate web services instead. If there are no web services to carry out a 
task, then it would indicate an omission in the set of web services provided.

One way to evaluate a different aspect of the web services would be to implement a very 
simple client application in another programming language, such as Perl, which also has 
web services support. The client merely needs to test the web service operations to make 
sure they work the same as they do in Java.

In this project, we looked at accessing Fedora and tying that back into Greenstone 3’s 
Java-client. It would be interesting to know whether other web service-enabled digital 
library systems—like EPrints is set to become—can be incorporated in a similar manner 
as well. Digital  libraries written in other programming languages that have their main 
functionality exposed as web services would enable our Java-based client application to 
build on their services. It would first require designing a proper format in which to store 
Greenstone collection and document data in there, and exporting Greenstone contents to 
this other digital library’s format. Trying to include another digital library system into the 
Greenstone 3 Java-client would also provide a way of evaluating the completeness of the 
DigitalServicesAPIA interface and its helpfulness when it comes to incorporating access 
to another repository.



References
[1] "The Simple Digital Library Interoperability Protocol (SDLIP-Core)". 
http://dbpubs.stanford.edu:8091/~testbed/doc2/SDLIP/
[2] Bainbridge, D., Witten, I.H., Buchanan, G., McPherson, J., Jones, S. and Mahoui, A., 
"Greenstone: A platform for  distributed digital library applications." in Proc Fifth European 
Conference on Research and Advance Technology for Digital  Libraries (ECDL'01), LNCS 2163, 
Constantopoulos, P. and Solvberg, I.T., Eds. Darmstadt, Germany: Springer-Verlag Heidelberg, 
2001, pp. 137-148.
[3] Bainbridge, D., Don, K.J., Buchanan, G.R., Witten, I.H., Jones, S.R., Jones, M. and Barr, 
M.I., "Dynamic digital  library construction and configuration", in Proc Eighth European Conference 
on Research and Advanced Technology for Digital  Libraries (ECDL'04), LNCS 3232, Heery, R. 
and Lyon, L., Eds. Bath, UK: Springer-Verlag, Berlin, 2004, pp. 1-13.
[4] Bainbridge, D., Kaun-Yu, K. and Witten, I.H., "Document level interoperability for 
collection creators", JCDL, 2006,  pp.105-106.
[5] Beach, R., Tansley, R., Harnad, S., Packer, A.L., English, R., Lunau, C.D., Jokitalo, P. and 
Twiss-Brooks, A., "In  Brief", D-Lib Magazine, vol. 6(10), 2000.
[6] Carr, L., "Eprints version 3: Repository Walkthrough", 
http://www.eprints.org/software/v3/EPrintsv3Presentation_small.pdf, 2007
[7] Deitel, H.M., Deitel, P.M., DuWaldt, B. and Trees, L.K., Web Services: A Technical 
Introduction (Deitel Developer  Series). Prentice Hall PTR, 2002.
[8] Don, K., Buchanan, G. and Witten, I.H., "Greenstone3: A modular digital library", 
Department of Computer Science,  University of Waikato, 
http://www.greenstone.org/docs/greenstone3/manual.pdf, 2006
[9] Englander, R., Java and SOAP. O' Reilly, 2002.
[10] Lagoze, C., Payette, S., Shin, E. and Wilper, C., "Fedora: An Architecture for Complex 
Objects and their  Relationships", International Journal on Digital Libraries, vol. 6(2), pp. 124-138, 
2006.
[11] Pedersen, G.S., "Fedora Generic Search Service", Technical University of Denmark, Fedora 
Project,  http://defxws2006.cvt.dk/fedoragsearch/, 2006
[12] Phillips, S., Green, C., Maslov, A., Mikeal, A. and Leggett, J., "Manakin: A New Face for 
DSpace", D-Lib Magazine,  vol. 13(11/12), 2007.
[13] Smith, M., Bass, M., McClellan, G., Tansley, R., Barton, M., Branschofsky, M., Stuve, D. 
and Walker, J.H., "DSpace:  an open source dynamic digital repository", D-Lib Magazine, vol. 9(1), 
2003.
[14] Tansley, R. and Harnad, S., "Eprints.org software for creating institutional and individual 
open archives", D-Lib  Magazine, vol. 6(10), 2000.
[15] The Fedora Development Team, "Fedora Tutorial 1: Introduction to Fedora", 
http://www.fedora.info/download/2.2.1/userdocs/tutorials/tutorial1.pdf, 2005
[16] Witten, I.H., Bainbridge, D., Tansley, R., Huang, C. and Don, K.J., "StoneD. A Bridge 
between Greenstone and DSpace",  D-Lib Magazine, vol. 11(9), 2005.
[17] Witten, I.H. and Bainbridge, D., "A retrospective look at Greenstone: lessons from the first 
decade", in Proceedings  of the 2007 conference on Digital libraries. Vancouver, BC, Canada: ACM, 
2007, pp. 147-156.



Appendix
Table A.1: The Greenstone 3 web services Access API. Listing of web service method definitions.

Methods for sending describe-type requests to the Greenstone's Messagerouter, Collections, ServiceRacks and Services
(See Describe-type request messages, Greenstone 3 Developer's Manual, Section 3.4, pp.35-41)

String describe();
String describe(String lang, String subsetOption);
String describeServiceRack(String toSC, String lang, String 
subsetOption);
String describeCollection(String toColl, String lang, String 
subsetOption);
String describeCollService(String toColl, String toService, String 
lang, String subsetOption);
String describeService(String toService, String lang, String 
subsetOption);

String getMessageRouterSubsetOptions(); Returns the values accepted for the SubsetOption parameter of 
describe  requests  sent  to  the  MessageRouter,  Collections  and 
ServiceRacks and Services (respectively).

String getCSSubsetOptions();
String getServiceSubsetOptions();

Query requests for executing queries
(See process-type messages: query-type services, Greenstone 3 Developer's Manual, Section 3.8.1, pp.45, 46)

String queryProcess(String toColl, String toService, String lang, 
String[] names, String[] values);
String queryProcess(String to, String lang, String[] names, 
String[] values);

String queryProcess(String to, String lang, String 
paramListElement);

This method can be used if  the user has already prepared the 
(proper) XML specifying the list of parameters required by the 
Query service being invoked

String queryProcess(String toColl, String toService, String lang, The  Hashmap  parameter  requires  mappings  from  query 



HashMap nameToValsMap); fieldnames to field values. The fieldnames and fixed field values 
must be those recognised by Greenstone 3.String queryProcess(String to, String lang, HashMap 

nameToValsMap);

String simplerFieldNameQueryProcess(String collection, String 
service, String lang, HashMap nameValParamsMap);

This  method’s  Hashmap  parameter  of  query  fieldnames  and 
values will accept the user-friendly  fieldnames returned by the 
getFieldNameMappings()  method as  well  as  the abbreviations 
used by Greenstone 3.  Next to that, this method allows the user 
to  provide  field values like  "all  fields",  "text",  "titles", 
"subjects", "organisations" instead of Greenstone’s accepted ZZ, 
TX, DL,  DS,  DO respectively.  The user  can  provide "on" or 
"off" for such fields as casefolding and stemming, instead of the 
expected "1" or "0". 

static HashMap getFieldNameMappings(); Hashmap of mappings from user-intelligible query fieldnames to 
the argument abbreviations Greenstone 3 uses for them. Users 
who wish to use the two regular queryProcess methods that take 
HashMap parameters, may call this method to find out what the 
query fieldnames are that Greenstone 3 accepts in order to pass 
the correct fieldname abbreviation.

Retrieve request messages for Content, Structure and Metadata retrieval for Documents and Classifiers
(See process-type messages: retrieve-type services, Greenstone 3 Developer's Manual, Section 3.8.3, pp.47-49)

DocumentContentRetrieve requests
String retrieveDocContent(String toColl, String lang, String[] 
docNodeIDs);

String retrieveDocContent(String toColl, String lang, String 
docNodeListElement);

If the user has already prepared the proper XML specifying the 
list  of  DocumentNodes  for  which  they  want  to  retrieve  the 
content, then they can use this method.

DocumentStructureRetrieve requests



String retrieveEntireDocStructure(String toColl, String lang, 
String[] docNodeIDs);
String retrieveDocStructure(String toColl, String lang, String[] 
docNodeIDs, String[] structure, String[] info);
String retrieveEntireDocStructure(String toColl, String lang, 
String docNodeListElement); If the user has already prepared the proper XML specifying the 

list of DocumentNodes or ClassifierNodes for which they want 
to retrieve the structure, then they can use these two methods.String retrieveDocStructure(String toColl, String lang, String 

docNodeListElement, String[] structure, String[] info);

String documentStructureOptions(); Returns  the  values  Greenstone  accepts  for  the  parameters 
structure and info when sending  a DocumentStructureRetrieve 
request.  For structure, these can be ancestors, parent, siblings, 
children, descendants, entire. For info, this can be numSiblings, 
siblingPosition, numChildren. 

String browseStructureOptions();

String documentStructureInfo();

DocumentMetadataRetrieve requests
String retrieveAllDocMetadata(String toColl, String lang, String[] 
docNodeIDs);
String retrieveDocMetadata(String toColl, String lang, String[] 
docNodeIDs, String metaName);
String retrieveDocMetadata(String toColl, String lang, String[] 
docNodeIDs, String[] metaNames);
String retrieveAllDocMetadata(String toColl, String lang, String 
docNodeListElement); If the user has already prepared the proper XML specifying the 

list  of  DocumentNodes  for  which  they  want  to  retrieve  the 
metadata, then they can use these three methods.

String retrieveDocMetadata(String toColl, String lang, String 
docNodeListElement, String metaName);
String retrieveDocMetadata(String toColl, String lang, String 
docNodeListElement, String[] metaNames);
ClassifierBrowseMetadataRetrieve - Metadataretrieve for 
browsing classification hierarchies
String browseMetadataRetrieveAll(String toColl, String 
categoryName, String lang, String[] nodeIDs);



String browseMetadataRetrieve(String toColl, String 
categoryName, String lang, String[] nodeIDs, String metaName);
String browseMetadataRetrieveAll(String toColl, String 
categoryName, String lang, String nodeListElement); If the user has already prepared the proper XML specifying the 

list  of  ClassifierNodes  for  which  they  want  to  retrieve  the 
metadata, then they can use these two methods.

String browseMetadataRetrieve(String toColl, String 
categoryName, String lang, String nodeListElement, String 
metaName);

The core process method (which can process all valid Greenstone 3 messages)
String process(String toColl, String toService, String lang, String 
id, String paramList);

A  direct  mapping  of  the  process  method  of  Greenstone  3's 
MessageRouter.


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables and Figures
	Chapter 1. Introduction
	1.1. Background
	1.1.1. Interfaces to Greenstone
	1.1.2. Greenstone 3

	1.2. Aims
	1.3. Overview of Greenstone 3
	1.4. Objectives

	Chapter 2. System review
	2.1. Digital Library Systems
	2.1.1. DSpace
	2.1.2. EPrints
	2.1.3. Fedora

	2.2. Web services
	2.2.1. The role of web services

	2.3. Interoperability
	2.3.1. The Simple Digital Library Interoperability Protocol (SDLIP)


	Chapter 3. An extended worked example
	3.1. The Query pane
	3.2. The Search results pane
	3.3. The Browse pane
	3.4. Displaying images

	Chapter 4. System design and implementation
	4.1. Web services for Greenstone 3
	4.1.1. Considering the functionality to map into web services
	4.1.2. Web service APIs
	4.1.3. Types of parameters and return values for the web services
	4.1.4. The design stages

	4.2. The Java-client for Greenstone 3
	4.2.1. Design and Implementation

	4.3. Working with the Fedora repository
	4.3.1. Storing Greenstone documents in the Fedora repository
	4.3.2. Connecting to the local Fedora repository of Greenstone objects
	4.3.3. Integrating access to the Fedora repository into the Java-client


	Chapter 5. Evaluation
	5.1. Evaluating the web services for Greenstone 3
	5.1.1. Evaluating the design of Greenstone 3’s web service method definitions
	5.1.2. Using the Java-client to evaluate the design and completeness of Greenstone 3’s Access-related web services
	5.1.3. Comparing Greenstone 3’s web services with the breadth of services provided by Fedora

	5.2. The Java-client for Greenstone 3
	5.3. The FedoraGS3 component
	5.3.1. Limitations

	5.4. Conclusion and future work
	5.4.1. Suggestions for further work in this area


	References
	Appendix

