
Greenstone 3 : A modular digital library.

Katherine Don, George Buchanan and Ian H. Witten

Department of Computer Science
University of Waikato

Hamilton, New Zealand
{kjdon, grbuchan, ihw}@cs.waikato.ac.nz

Greenstone Digital Library Version 3 is a complete redesign and reimplementation
of the Greenstone digital library software. The current version (Greenstone 2)
enjoys considerable success and is being widely used. Greenstone 3 will capitalise
on this success, and in addition it will

• improve flexibility, modularity, and extensibility
• lower the bar for “getting into” the Greenstone code with a view to under-

standing and extending it
• use XML where possible internally to improve the amount of self-documentation
• make full use of existing XML-related standards and software
• provide improved internationalisation, particularly in terms of sort order, in-

formation browsing, etc.
• include new features that facilitate additional “content management” opera-

tions
• operate on a scale ranging from personal desktop to corporate library
• easily permit the incorporation of text mining operations
• use Java, to encourage multilinguality, X-compatibility, and to permit easier

inclusion of existing Java code (such as for text mining).

Parts of Greenstone will remain in other languages (e.g. MG, MGPP); JNI (Java
Native Interface) will be used to communicate with these.

A description of the general design and architecture of Greenstone 3 is cov-
ered by the document The design of Greenstone3: An agent based dynamic digital
library (design-2002.ps, in the gsdl3/docs/manual directory).

This documentation consists of several parts. Section 1 is for administrators,
and covers Greenstone 3 installation, how to access the library, and some adminis-
tration issues. Section 2 is for users of the software, and looks at using the sample
collections, creating new collections, and how to make small customisations to the
interface. The remaining sections are aimed towards the Greenstone developer.
Section 3 describes the run-time system, including the structure of the software,
and the message format, while Section 4 describes the collection building process.
Section 5 describes how to add new features to Greenstone , such as how to add

1

new services, new page types, new plugins for different document formats. Sec-
tion 6 describes how to make Greenstone run in a distributed fashion, using SOAP
as an example communications protocol. Finally, there are several appendices, in-
cluding how to install Greenstone from CVS, some notes on Tomcat and SOAP,
and a comparison of Greenstone 2 and Greenstone 3 format statements.

2

1 Greenstone installation and administration

This section covers where to get Greenstone 3 from, how to install it and how to run
it. The standard method of running Greenstone 3 is as a Java servlet. We provide
the Tomcat servlet container to serve the servlet :-). Standard web servers may be
able to be configured to provide servlet support, and thereby remove the need to use
Tomcat. Please see your web server documentation for this. This documentation
assumes that you are using Tomcat. To access Greenstone 3 , Tomcat must be
started up, and then it can be accessed via a web browser.

1.1 Get and install Greenstone

Greenstone 3 is available from http://www.greenstone.org/greenstone3. There
are currently two distributions: a self-installing tar for Linux, and a Windows exe-
cutable.

Greenstone 3 is also available through CVS (Concurrent Versioning System).
This provides the latest development version, and is not guaranteed to be stable.
Appendix A describes how to download and install Greenstone 3 from CVS.

1.1.1 Linux

Download the latest version of the self-installing tar file, gsdl3-x.xx-unix.sh,
and run it in a shell (./gsdl3-x.xx-unix.sh). Greenstone 3 will be installed into
a directory called gsdl3 inside the current directory. The install script will prompt
you for the name of your computer and what port to run Tomcat on (the defaults
being localhost and 8080). Once Greenstone 3 has been installed, you can start
the library by running ./gsdl3/gs3-launch.sh, and opening up a browser point-
ing to http://localhost:8080/gsdl3 (substituting your chosen name and port if
necessary).

1.1.2 Windows

Download the latest Windows executable, gsdl3-x.xx-win32.exe, and double
click it to start the installation. You will be prompted for your computer name and
the port number to run Tomcat on (defaults are localhost and 8080). Once Green-
stone 3 is installed, you can access the library by selecting Greenstone Digital

Library 3 in the Start menu.

1.1.3 Accessing the library in a browser

Once you have started up the library (see the previous sections for OS dependent
instructions), you can access it in a browser at http://localhost:8080/gsdl3
(or http://your-computer-name:your-chosen-port/gsdl3). This gets you to
a welcome page, with three links: one to run a test servlet (this allows you to check
that Tomcat is running properly), one to run the standard library servlet using the

3

site localsite, and one to run a library servlet using the site soapsite. This
site uses a SOAP connection to communicate with localsite, and demonstrates the
library working in a distributed fashion. The SOAP connection is not enabled by
default: see Section 6 for details about how to run Greenstone 3 distributedly.

1.2 How the library works

The standard library program is a Java servlet. We use the Tomcat servlet container
to present the servlets over the web. Tomcat takes CGI-style URLs and passes the
arguments to the servlet, which processes these and returns a page of HTML. As
far as an end-user is concerned, a servlet is a Java version of a CGI program. The
interaction is similar: access is via a web browser, using arguments in a URL.

Other types of interfaces can be used, such as Java GUI programs. See Sec-
tion 5.3 for details about how to make these.

1.2.1 Restarting the library

The library program (actually Tomcat) can be restarted in Windows by closing the
window, and restarting it from the Start menu. In linux, you nned to go to the gsdl3
directory, and run gsdl3/gs3-launch.sh -shutdown, then gsdl3/gs3-launch.sh.

Tomcat must be restarted any time you make changes in the following for those
changes to take effect:

• $GSDL3HOME/web/WEB-INF/web.xml

• $GSDL3HOME/comms/jakarta/tomcat/conf/server.xml

• any classes or jar files used by the servlets

Note: stdout and stderr for the servlets both go to
$GSDL3HOME/comms/jakarta/tomcat/logs/catalina.out

1.3 Directory structure

Table 1 shows the file hierarchy for Greenstone 3 . The first part shows the common
stuff which can be shared between Greenstone users—the source, libraries etc.
Under Linux, these can be installed into appropriate system directories. The second
part shows stuff used by one person/group—their sites and interface setup (see
Section 1.4). etc. There can be several sites/interfaces per installation. All the
files inside the gsdl3/web directory comprise the gsdl3 context for Tomcat, and are
accessible via Tomcat.

1.4 Sites and interfaces

[local gs stuff (sites and interfaces) vs installed stuff (code)
where they live, whats the difference, what each contains.]

4

Table 1: The Greenstone directory structure
directory description
gsdl3 The main installation directory—gsdl3home can be changed to

something more standard
gsdl3/src Source code lives here
gsdl3/src/java/ java source code
gsdl3/src/cpp/ c/ cpp source code—none yet
gsdl3/packages Imported packages from other systems e.g. MG, MGPP
gsdl3/lib Shared library files
gsdl3/lib/java Java jar files
gsdl3/resources any resources that may be needed
gsdl3/resources/java properties files for java resource bundles - used to handle all the

language specific text This directory is on the class path, so any
other Java resources can be placed here

gsdl3/resources/soap soap service description files
gsdl3/resources/dtd Greenstone 3 has trouble loading DTD files sometimes. They

can go here
gsdl3/bin executable stuff lives here
gsdl3/bin/script some Perl building scripts
gsdl3/bin/linux Linux executables for e.g. MGPP
gsdl3/bin/windows windows executables for e.g. MGPP
gsdl3/comms Put some stuff here for want of a better place—things to do with

servers and communication. e.g. soap stuff, and Tomcat servlet
container

gsdl3/docs Documentation :-)
gsdl3/web This is where the web site is defined. Any static html files can

go here. This directory is the Tomcat root directory.
gsdl3/web/WEB-INF The web.xml file lives here (servlet configuration information

for Tomcat)
gsdl3/web/WEB-INF/classes Servlet classes go in here
gsdl3/web/sites Contains directories for different sites—a site is a set of collec-

tions and services served by a single MessageRouter (MR). The
MR may have connections (e.g. soap) to other sites

gsdl3/web/sites/localsite One site - the site configuration file lives here
gsdl3/web/sites/localsite/collect The collections directory
gsdl3/web/sites/localsite/images Site specific images
gsdl3/web/sites/localsite/transforms Site specific transforms
gsdl3/web/interfaces Contains directories for different interfaces - an interface is de-

fined by its images and XSLT files
gsdl3/web/interfaces/default The default interface
gsdl3/web/interfaces/default/images The images for the default interface
gsdl3/web/interfaces/default/transforms The XSLT files for the default interface

5

A site is comprised of a set of collections and possibly some site-wide services.
An interface (in this web-based servlet context) is a set of images along with a set
of xslt files used for translating xml output from the library into an appropriate
form—html in general.

One Greenstone 3 installation can have many sites and interfaces, and these
can be paired in different combinations. One instantiation of a servlet uses one site
and one interface, so every specified pairing results in a new servlet instance. For
example, a single site might be served with two different interfaces. This provides
different modes of access to the same content. eg HTML vs WML, or perhaps pro-
viding a completely different look and feel for different audiences. Alternatively,
a standard interface may be used with many different sites—providing a consistent
mode of access to a lot of different content.

Collections live in the collect directory of a site. Any collections that are
found in this directory when the servlet is initialised will be loaded up and pre-
sented to the user. Collections require valid configuration files, but apart from this,
nothing needs to be done to the site to use new collections. Collections added while
Tomcat is running will not be noticed automatically. Either the server needs to be
restarted, or a configuration request may be sent to the library, triggering a (re)load
of the collection (this is described in Section 1.6).

There are two sites that come with the distribution: localsite, and soapsite.
localsite has several demo collections, while soapsite has none. soapsite

specifies that a soap connection should be made to localsite. Getting this to
work involves setting up a soap server for localsite: see Section 6 for details.

Each site and interface has a configuration file which specifies parameters for
the site or interface—these are described in Section 1.5.

The file $GSDL3HOME/web/WEB-INF/web.xml contains the setup information
for Tomcat. It tells Tomcat what servlets to load, what initial parameters to pass
them, and what web names map to the servlets. There are three servlets specified in
web.xml (these correspond to the three links in the welcome page for Greenstone 3
): one is a test servlet that just prints “hello greenstone” to a web page. This is use-
ful if you are having trouble getting Tomcat set up. The other two are Greenstone
library servlets, library, which serves localsite, and library1 which serves soapsite.
Both of these servlets use the standard interface (called default).

The initialisation parameters used by the library servlets are shown in Table 2.
This is where you define what site and interface each servlet uses. Any number of
servlets can be specified here. See Appendix B for more details about Tomcat.

1.5 Configuring a Greenstone installation

Initial Greenstone 3 system configuration is determined by a set of configura-
tion files, all expressed in XML. Each site has a configuration file that binds pa-
rameters for the site, siteConfig.xml. Each interface has a configuration file,
interfaceConfig.xml, that specifies Actions for the interface. Collections also
have several configuration files; these are discussed in Section 2.3. The configura-

6

Table 2: Greenstone servlet initialisation parameters
name sample value description
gsdl3 home /research/kjdon/gsdl3 the base directory of the gsdl3 installa-

tion
site name localsite the name of the site to use
interface name default the name of the interface to use
library name library the web name of the servlet
default lang en the default language for the interface
receptionist class NZDLReceptionist (optional) specifies an alternative Re-

ceptionist to use
messagerouter class NewMessageRouter (optional) specifies an alternative

MessageRouter to use
params class NZDLParams (optional) specifies an alternative

GSParams class to use

tion files are read in when the system is initialised, and their contents are cached in
memory. This means that changes made to these files once the system is running
will not take immediate effect. Tomcat needs to be restarted for changes to the
interface configuration file to take effect. However, changes to the site configura-
tion file can be incorporated sending a CGI-type command to the library. There
are a series of commands that can be sent to the library to induce reconfiguration
of different modules, including reloading the whole site. This removes the need
to restart the system to reflect these changes. These commands are described in
Section 1.6.

1.5.1 Site configuration file

The file siteConfig.xml specifies the URI for the site (localSiteName), the
HTTP address for site resources (httpAddress), any ServiceClusters that the site
provides (for example, collection building), any ServiceRacks that do not belong to
a cluster or collection, and a list of known external sites to connect to. Collections
are not specified in the site configuration file, instead they are determined by the
contents of the site’s collections directory.

The HTTP address is used for retrieving resources from a site outside the XML
protocol. Because a site is HTTP accessible through Tomcat, any files (e.g. images)
belonging to that site or to its collections can be specified in the HTML of a page
by a URL. This avoids having to retrieve these files from a remote site via the XML
protocol1 .

Figure 1 shows two example site configuration files. The first example is for
a rudimentary site with no site-wide services, which does not connect to any ex-
ternal sites. The second example is for a site with one site-wide service clus-

1Currently, sites live inside the Tomcat gsdl3 root context, and therefore all their content is acces-
sible over HTTP via the Tomcat address. We need to see if parts can be restricted. Also, if we use a
different protocol, then resources from remote sites may need to come through the XML. Also, if we
are running locally without using Tomcat, we may want to get them via file:// rather than http://.

7

<siteConfig>
<localSiteName value="org.greenstone.localsite"/>
<httpAddress value="http://localhost:8080/gsdl3/sites/localsite"/>
<serviceClusterList/>
<serviceRackList/>
<siteList/>

</siteConfig>

<siteConfig>
<localSiteName value="org.greenstone.gsdl1"/>
<httpAddress value="http://localhost:8080/gsdl3/sites/gsdl1"/>
<serviceClusterList>
<serviceCluster name="build">

<metadataList>
<metadata name="Title">Collection builder</metadata>
<metadata name="Description">Builds collections in a

gsdl2-style manner</metadata>
</metadataList>
<serviceRackList>

<serviceRack name="GS2Construct"/>
</serviceRackList>

</serviceCluster>
</serviceClusterList>
<siteList>
<site name="org.greenstone.localsite"

address="http://localhost:8090/soap/servlet/rpcrouter"
type="soap"/>

</siteList>
</siteConfig>

Figure 1: Two sample site configuration files

ter - a collection building cluster. It also connects to the first site using SOAP.
These two sites happen to be running on the same machine, which is why they can
use localhost in the address. For site gsdl1 to talk to site localsite, a SOAP
server must be run for localsite. The address of the SOAP server, in this case, is
http://localhost:8080/soap/servlet/rpcrouter.

1.5.2 Interface configuration file

The interface configuration file interfaceConfig.xml lists all the actions that the
interface knows about at the start (other ones can be loaded dynamically). Actions
create the web pages for the library: there is generally one Action per type of page.
For example, a query action produces the pages for searching, while a document
action displays the documents. The configuration file specifies what short name
each action maps to (this is used in library urls for the a (action) parameter) e.g.
QueryAction should use a=q. If the interface uses XSLT, it specifies what XSLT
file should be used for each action and possibly each subaction. This makes it easy

8

<interfaceConfig>
<actionList>
<action name=’p’ class=’PageAction’>

<subaction name=’home’ xslt=’home.xsl’/>
<subaction name=’about’ xslt=’about.xsl’/>
<subaction name=’help’ xslt=’help.xsl’/>
<subaction name=’pref’ xslt=’pref.xsl’/>

</action>
<action name=’q’ class=’QueryAction’ xslt=’basicquery.xsl’/>
<action name=’b’ class=’GS2BrowseAction’ xslt=’classifier.xsl’/>
<action name=’a’ class=’AppletAction’ xslt=’applet.xsl’/>
<action name=’d’ class=’DocumentAction’ xslt=’document.xsl’/>
<action name=’xd’ class=’XMLDocumentAction’>

<subaction name=’toc’ xslt=’document-toc.xsl’/>
<subaction name=’text’ xslt=’document-content.xsl’/>

</action>
<action name=’pr’ class=’ProcessAction’ xslt=’process.xsl’/>
<action name=’s’ class=’SystemAction’ xslt=’system.xsl’/>

</actionList>
<languageList>
<language name="en">

<displayItem name=’name’>English</displayItem>
</language>
<language name="fr">

<displayItem name=’name’>Français</displayItem>
</language>
<language name=’es’>

<displayItem name=’name’>Español</displayItem>
</language>

</languageList>
</interfaceConfig>

Figure 2: Default interface configuration file

for developers to implement and use different actions and/or XSLT files without
recompilation. The server must be restarted, however.

It also lists all the languages that the interface text files have been translated
into. These have a name attribute, which is the ISO code for the language, and a
displayElement which gives the language name in that language (note that this
file should be encoded in UTF-8). This language list is used on the Preferences
page to allow the user to change the interface language. Details on how to add a
new language to a Greenstone 3 library are shown in Section 2.6.

1.6 Run-time re-initialisation

[**should this section go in here, cos its kind of adminy, or go into the user stuff,
cos you need to do it after building a collection???**]

When Tomcat is started up, the site and interface configuration files are read
in, and actions/services/collections loaded as necessary. The configuration is then

9

Table 3: Example run-time configuration arguments.
a=s&sa=c reconfigures the whole site. Reads in siteConfig.xml, reloads

all the collections. Just part of this can be specified
with another argument ss (system subset). The valid val-
ues are collectionList, siteList, serviceList,
clusterList.

a=s&sa=c&sc=XXX reconfigures the XXX collection or cluster. ss can also be used
here, valid values are metadataList and serviceList.

a=s&sa=a (re)activate a specific module. Modules are specified using two
arguments, st (system module type) and sn (system module
name). Valid types are collection, cluster site.

a=s&sa=d deactivate a module. st and sn can be used here too. Valid
types are collection, cluster, site, service. Mod-
ules are removed from the current configuration, but will reap-
pear if Tomcat is restarted.

a=s&sa=d&sc=XXX deactivate a module belonging to the XXX collection or cluster.
st and sn can be used here too. Valid types are service.

static unless Tomcat is restarted, or re-configuration commands issued.
There are several commands that can be issued to Tomcat to avoid having to

restart the server. These can reload the entire site, or just individual collections.
Unfortunately at present there are no commands to reconfigure the interface, so
if the interface configuration file has changed, Tomcat must be restarted for those
changes to take effect. Similarly, if the java classes are modified, Tomcat must be
restarted then too.

Currently, the runtime configuration commands can only be accessed by typing
arguments into the URL; there is no nice web form yet to do this.

The arguments are entered after the library? part of the URL. There are
three types of commands: configure, activate, deactivate2 . These are specified by
a=s&sa=c, a=s&sa=a, and a=s&sa=d, respectively (a is action, sa is subaction). By
default, the requests are sent to the MessageRouter, but they can be sent to a col-
lection/cluster by the addition of sc=xxx, where xxx is the name of the collection
or cluster. Table 3 describes the commands and arguments in a bit more detail.

2There is no security for these commands yet in Greenstone , so the deactivate/delete command
is disabled

10

2 Using Greenstone 3

Once Greenstone 3 is installed, the sample collections can be accessed. The in-
stallation comes with several example collections, and Section 2.1 describes these
collections and how to use them. Section 2.2 describes how to build new collec-
tions.

2.1 Using a collection

[TODO: expand this section]
A collection typically consists of a set of documents, which could be text, html,

word, PDF, images, bibliographic records etc, along with some access methods, or
“services”. Typical access methods include searching or browsing for document
identifiers, and retrieval of content or metadata for those identifiers. Searching in-
volves entering words or phrases and getting back lists of documents that contain
those words. The search terms may be restricted to particular fields of the docu-
ment.

Browsing involves navigating pre-defined hierarchies of documents, following
links of interest to find documents. The hierarchies may be constructed on different
metadata fields, for example, alphabetical lists of Titles, or a hierarchy of Subject
classifications. Clicking on a bookshelf icon takes you to a lower level in the
hierarchy, while clicking on a book or page icon takes you to a document.

In the standard interface that comes with Greenstone 3 3, collections in a digital
library are presented in the following manner. The ’home’ page of the library
shows a list of all the public collections in that library. Clicking on a collection
link takes you to the home page for the collection, which we call the ’about’ page.
The standard page banner looks something like that shown in Figure 3.

Figure 3: A sample collection page banner

The image at the top left is a link to the collection’s home page. The top right
has buttons to link to the library home page, help pages and preference pages. All
the available services are arrayed along a navigation bar, along the bottom of the
banner. Clicking on a name accesses that service.

Search type services generally provide a form to fill in, with parameters in-
cluding what field or granularity to index, and the query itself. Clicking the search
button carries out the search, and a list of matching documents will be displayed.
Clicking on the icons in the results list takes you to the document itself.

3of course, this is all customisable

11

Once you are looking at a document, clicking the open book icon at the top
of the document, underneath the navigation bar, will take you back to the service
page that you accessed the document from.

[TODO: describe the colls that the sample installation comes with
brief description of what a collection is.
how to get around the collection, services etc.
querying vs browsing
use the demo colls that come with Greenstone 3 - one gs2 coll, one gs3 coll, tei
coll??
]

2.2 Building a collection

There are two ways to get a new collection into Greenstone 3 . The first is to
build it using the Greenstone 3 building process. The second way is to import a
Greenstone 2 collection.

Collections live in the collect directory of a site. As described in Section 1.4,
there can be several sites per Greenstone 3 installation. The collect directory is
at $GSDL3HOME/web/sites/site-name/collect, where site-name is the name of the
site you want your new collection to belong to.

The following two sections describe how to create a collection from scratch,
and how to import a Greenstone 2 collection. Once a collection has been built
(and is located in the collect directory), the library server needs to be notified that
there is a new collection. This can be accomplished in two ways4. If you are the
library administrator, you can restart Tomcat. The library servlet will then be cre-
ated afresh, and will discover the new collection when it scans the collect directory
for the collection list. Alternatively, an activate collection command can be is-
sued to the servlet, using the arguments a=s&sa=a&st=collection&sn=collname,
where collname should be replaced with the collection name—this tells the library
program to (re)load the collname collection.

2.2.1 Creating a collection from scratch

Building Greenstone 3 collections is done using the gs3-build.sh script, with
the collectionConfig.xml file controlling how the building is done. There are
a number of considerations in building a collection: including what documents
appear in the collection, how they are indexed for searching, which classifications
are used for browsing, etc.

Firstly, the documents that comprise the collection should be placed in the
import subdirectory. At present, only documents in this directory will appear in the
collection. [TODO: describe the kinds of documents that can be added, something
about METS files?]

4eventually there will also probably be automatic polling for new collections

12

Metadata for documents can be added using metadata.xml files. These files
have already been used in Greenstone 2 , and the format is the same in Greenstone
3 . A metadata.xml file has a root element of <DirectoryMetadata>. This en-
closes a series of <FileSet> items. Neither of these tags has any attributes. Each
<FileSet> item includes two parts: firstly, one or more <FileName> tags, each of
which encloses a regular expression to identify the files which are to be assigned
the metadata. Only files in the same directory as the metadata.xml, or in one of
its child directories, file will be selected. The filename tag encloses the regular
expression as text, eg:

<FileName>example</FileName>

This would match any file containing the text ’example’ in its name. The sec-
ond part of the <FileSet> item is a <Description> item. The <Description> tag
has no attributes, but encloses one or more <Metadata> tags. Each <Metadata>

tag contains one metadata item, i.e. a label to describe the metadata and a corre-
sponding value. The <Metadata> tag has one compulsory attribute: “name”. This
attribute gives the metadata label to add to the document. Each <Metadata> tag
also has an optional attribute: “mode”. If this attribute is set to “accumulate” then
the value is added to the document, and any existing values for that metadata item
are retained. If the attribute is set to “set” or is omitted, then the existing value of
the metadata item will be deleted.

A sample metadata.xml file can be found in the gs3test collection. However,
here is an example fragment of that metadata.xml file:

<FileSet>
<FileName>ec160e</FileName>
<Description>
<Metadata name="Title">The Courier - No.160 - Nov - Dec 1996 -

Dossier Habitat - Country reports: Fiji , Tonga (ec160e)</Metadata>
<Metadata mode="accumulate" name="Language">English</Metadata>
<Metadata mode="accumulate" name="Subject">Settlements and housing:

general works incl. low- cost housing, planning techniques, surveying,
etc.</Metadata>

<Metadata mode="accumulate" name="Subject">The Courier ACP 1990 - 1996
Africa-Caribbean-Pacific - European Union</Metadata>

<Metadata mode="accumulate" name="Organization">EC Courier</Metadata>
<Metadata mode="accumulate" name="AZList">T.1</Metadata>

</Description>
</FileSet>

Here, only one file pattern is found in the file set. However, the Description

tag contains a number of separate metadata items. Note that the Title metadata
does not have the mode=accumulate attribute. This means that when the title is
assigned to a document, its existing Title information will be lost.

The basic means of finding documents in Greenstone is search. Options for
building the search indexes include which indexer to use, what granularity to use

13

for the indexes (e.g. whether to index documents as a whole, or sections of doc-
uments), what content the index should have (the whole text of the document or
one or many metadata fields). Section-level indexes allow a reader to recall part
of a document (for instance, a chapter) rather than the entire document. However,
Greenstone 3 must be able to identify the internal structure of the document to
achieve this. The degree to which structure can be found varies from file format to
file format.

The collectionConfig.xml file controls the all of these options for collection
building, and the format is described in Section 2.3.

If a collectionConfig.xml file is not found, the Greenstone 3 build process will
import and use options, wherever possible, from a Greenstone 2 collect.cfg file.
However, it is strongly recommended that a proper collectionConfig.xml file is
used wherever possible. [NOTE: I think we should require a proper config file for
gs3 building–kjdon]

To build a collection, execute gs3build.sh sitename collectionname. The
process will run, placing the new indexes in the building subdirectory of the
collection’s directory. You must have mysql running before you start building—
running gs3-launch.sh will start up the mysql server as well as tomcat.

Once the build process is complete, the building directory should be renamed to
index (after deleting or renaming the existing index directory, if any), and Tomcat
prompted to reload the collection—either by restarting the server, or by sending an
activate collection command to the library servlet.

[TODO: need to describe namespaces somewhere?]

2.2.2 Importing a Greenstone 2 collection

Greenstone 3 can also serve Greenstone 2 collections. If you have a Greenstone 2
collection5 , you can copy it into the collect directory of the site you are using. Or
make a link to it from the collect directory if your OS supports that. The Greenstone
3 run time system requires different configuration files for a collection, so you need
to run a conversion script. All this does is create the new collectionConfig.xml and
buildConfig.xml from the old collect.cfg and build.cfg files. It does not change the
collection in any way, so it can still be used by Greenstone 2 software.

The conversion script is convert coll from gs2.pl. To run it, make sure you
have run source setup.bash (or run setup in Windows) in your top-level gsdl di-
rectory of the Greenstone 2 installation (as well as running the standard gs3-setup

command). Then you need to specify the path to the collect directory and the col-
lection name as parameters to the conversion script. For example,

convert_coll_from_gs2.pl -collectdir
$GSDL3HOME/web/sites/localsite/collect demo

5For information about the Greenstone 2 software, and how to build collections using it, visit
www.greenstone.org

14

The script attempts to create Greenstone 3 format statements from the old Green-
stone 2 ones. The conversion may not always work properly, so if the collection
looks a bit strange under Greenstone 3 , you should check the format statements.
Format statements are described in Section 2.5.

Once again, to have the collection recognised by the library servlet, you can
either restart Tomcat, or load it dynamically.

2.3 Collection configuration files

Each collection has two, or possibly three, configuration files, collectionConfig.xml
and buildConfig.xml, and optionally collectionInit.xml, that give metadata,
display and other information for the collection.6 The first includes user-defined
presentation metadata for the collection, such as its name and the About this col-
lection text; gives formatting information for the collection display; and also gives
instructions on how the collection is to be built. The second is produced by the
build-time process and includes any metadata that can be determined automati-
cally. It also includes configuration information for any ServiceRacks needed by
the collection.

All the configuration files should be encoded using UTF-8.

2.3.1 collectionInit.xml

This optional file is only used for non-standard, customised collections. It specifies
the class name of the non-standard collection class. The only syntax so far is the
class name:

<collectionInit class="XMLCollection"/>

Section 5.6 describes an example collection where this file is used. Depending
on the type of collection that this is used for, one or both of the other config files
may not be needed.

2.3.2 collectionConfig.xml

The collection configuration file is where the collection designer (e.g. a librarian)
decides what form the collection should take. This includes the collection meta-
data such as title and description, and also includes what indexes and browsing
structures should be built. The format of collectionConfig.xml is still under
consideration. However, Figure 4 shows the parts of it that have been defined so
far.

Display elements for a collection or metadata for a document can be entered
in any language—use lang=’en’ attributes to metadata elements to specify which
language they are in.

6collectionConfig.xml and buildConfig.xml replace collect.cfg and
build.cfg in Greenstone 2.

15

<collectionConfig xmlns:gsf="http://www.greenstone.org/configformat"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<metadataList>
<metadata name="creator">greenstone@cs.waikato.ac.nz</metadata>

</metadataList>
<displayItemList>
<displayItem name="name" lang="en">Greenstone 3 demo</displayItem>
<displayItem name="icon" lang="en">gs3demo.gif</displayItem>
<displayItem name="smallicon" lang="en">gs3demosm.gif</displayItem>
<displayItem name="description" lang="fr">Il s’agit d’une collection

de démonstration pour le logiciel Greenstone. Elle contient
seulement un petit échantillon des Bibliothèques humanitaires
pour le Développement (11 documents).</displayItem>

<displayItem name="description" lang="en">This is a demonstration
collection for the Greenstone digital library software. It contains
a small subset (11 books) of the Humanity Development Library. It
is built with mg using Greenstone 3 native building.</displayItem>

</displayItemList>
<search type=’mg’>
<index name="i1">

<field>text</field>
<level>document</level>
<displayItem name=’name’ lang="en">entire documents</displayItem>
<displayItem name=’name’ lang="fr">documents entiers</displayItem>
<displayItem name=’name’ lang="es">documentos enteros</displayItem>

</index>
<index name="i2">

<field>text</field>
<level>section</level>
<displayItem name=’name’ lang="en">chapters</displayItem>
<displayItem name=’name’ lang="fr">chapitres</displayItem>
<displayItem name=’name’ lang="es">capı́tulos</displayItem>

</index>
<format>

<gsf:template match="documentNode">
<td valign=’top’><gsf:link><gsf:icon/></gsf:link></td>
<td><gsf:metadata name=’Title’ /></td>

</gsf:template>
</format>

</search>
<browse>
<classifier name="CL1"/>
<classifier name="CL2"/>
<classifier name="CL3"/>
<classifier name="CL4">

<format>
<gsf:template match="documentNode">

<gsf:link><gsf:metadata name=’Keyword’ />

</gsf:link></gsf:template>
</format>

</classifier>
</browse>
<display/>

</collectionConfig>

[TODO: add in building instructions for the classifiers]

Figure 4: Sample collectionConfig.xml file (gs3demo collection)
16

The <metadataList> element specifies some collection metadata, such as cre-
ator. The <displayItemList> specifies some language dependent information that
is used for collection display, such as collection name and short description. These
displayItem elements can be specified in different languages.

The <search> element specifies what indexes should be built, and provides
some display and formatting information for each one. Search has an attribute,
type, which specifies which indexer to be used for indexing. Currently, mg and
mgpp are available. If type is not specified, mg is used. Multiple search elements
may be specified, if more than one indexer is to be used. (Note, this is not yet
recognised by the run-time system.)

Search indexes appear as individual <index> elements within the <search>

element. Some choices for the index are made using attributes of the element
itself, and some through child elements.

Each index must have a unique name, which is used to identify it within Green-
stone 3 The name is given as an attribute of the <index> element.

The other choices are described using child elements of <index>. The <level>
tag indicates the index level and the <field> tag the text to be used. The <level>

tag can contain one of document, section or paragraph, while the <field> tag can
contain “text” or the name of a metadata field. If the <level> tag is omitted, the
default setting is to index by document, and if the <field> tag is omitted, the
default setting is to index the document text.

Example index specifications include:
[NOTE: I think we shouldn’t have default level and field and that it must be

specified–kjdon]
To index only the title of each separate document in the collection:

<index name="dtt">
<level>document</level>
<field>dc:title</field>

</index>

...in this case the <field> tag refers to the “title” metadata item, found in the
Dublin Core namespace. The mg search engine would be used on this index.

Alternatively, to index the full document texts by section:

<index name="stx">
<level>section</level>

</index>

...or...

<index name="stx">
<level>section</level>
<field>text</field>

</index>

...in the first example, the <field> tag is not explicitly defined, and would default
to ’text’, whereas it is explicitly set to ’text’ in the second example. As they are of
the same name, they should not appear in the same collectionConfig.xml file.

17

Moving onto <classifier> items, the format is broadly similar to <index>

items, but with a couple of different choices. Firstly, each classifier should have
“name” and “type” attributes. In the case of <classifier> items the “type” at-
tribute identifies the type of classifier it is. At present, this should either be “Hier-
archy” or “AZList”.

The remaining choices for the classifier should follow as child elements of the
<classifier> element. The <file> element should contain the name of the file
that describes the classifier as its “URL” attribute. The format of this file will be
described later - it will vary from classifier type to classifier type. The <field>

element identifies the name of the field to index. More than one <field> element
may appear if two or more metadata fields are to be used with the classifier. Fi-
nally, the <sort> item identifies another metadata field which the items within one
classifier node are to be ordered. Unlike the <index> element, the <classifier>

element does not have default, assumed values for its children.
Inside the <search> and <browse> elements, <displayItem> elements are

used to provide titles for the indexes or classifiers, while <format> elements pro-
vide formatting instructions, typically for a document or classifier node in a list of
results. Placing the <format> instructions at the top level in the search or browse
element will apply the format to all the indexes or classifiers, while placing it inside
an individual index or classifier element will restrict that formatting instruction to
that item.

The <display> element contains optional formatting information for the dis-
play of documents. Templates that can be specified here include documentHeading,
DocumentContent, and other information that could be specified (in a yet to be de-
cided format) are things such as whether or not to display the cover image, table of
contents etc.

Format elements are desribed in Section 2.5.

2.4 buildConfig.xml

The file buildConfig.xml is produced by the collection building process. Ger-
erally it is not necessary to look at this file, but it can be useful in determining what
went wrong if the collection doesn’t appear quite the way it was planned.

It contains metadata and other information about the collection that can be
determined automatically, such as the number of documents it contains. It also
includes a list of ServiceRack classes that are required to provide the services that
have been built into the collection. The serviceRack names are Java classes that
are loaded dynamically at runtime. Any information inside the serviceRack ele-
ment is specific to that service—there is no set format. Figure 5 shows an example.
This configuration file specifies that the collection should load up 3 ServiceRacks:
GS2MGPPRetrieve, GS2MGPPSearch, and PhindPhraseBrowse. The contents of
each <serviceRack> element are passed to the appropriate ServiceRack objects
for configuration. The collectionConfig.xml file content is also passed to the
ServiceRack objects at configure time—the format and displayItem informa-

18

tion is used directly from the collectionConfig.xml file rather than added into
buildConfig.xml during building. This enables formatting and metadata changes
in collectionConfig.xml to take effect in the collection without rebuilding being
necessary. However, as these files are cached, the collection needs to be reloaded
for the changes to appear in the library.

2.5 Formatting the collection

Part of collection design involves deciding how the collection should look. Green-
stone 3 has a default ’look’ for a collection, so this is optional. However, the
default may not suit the purposes of some collections, so many parts to the look of
a collection can be determined by the collection designer.

In standard Greenstone 3 , the library is served to a web browser by a servlet,
and the HTML is generated using XSLT. XSLT templates are used to format all
the parts of the pages. These templates can be overridden by including them in the
collectionConfig.xml file. Some commonly overridden templates are those for
formatting lists: search results list, classifier browsing hierarchies, and for parts of
the document display.

Real XSLT templates for formatting search results or classifier lists are quite
complicated, and not at all easy for a new user to write. For example, the following
is a sample template for formatting a classifier list, to show Keyword metadata as
a link to the document.

<xsl:template match="documentNode" priority="2"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="collName"/>
<td><a href="{\$library_name}?a=d&c={\$collName}&

d={@nodeID}&dt={@docType}"><xsl:value-of
select="metadataList/metadata[@name=’Keyword’]"/>

</td>
</xsl:template>

To write this, the user would need to know that:

• the variable $library name exists,
• the collection name is passed in as a parameter called collName

• metadata for a document is found in a <metadataList> and that its form is
<metadata name="Keyword">the value</metadata>

• the arguments needed for the link to the document are a, sa, c, d, a,

dt.

Since XSLT is written in XML, we can use XSLT to transform XML into
XSLT. Greenstone 3 provides a simplified set of formatting commands, written in
XML, which will be transformed into proper XSLT. The user specifies a <gsf:template>
for what they want to format—these typically match documentNode or classifierNode
(for node in a classification hierarchy).

The template at the start of this section can be represented as:

19

<buildConfig xmlns:gsf="http://www.greenstone.org/configformat">
<metadataList>
<metadata name="numDocs">11</metadata>

</metadataList>
<serviceRackList>
<serviceRack name="GS2MGPPRetrieve">

<defaultLevel name="Sec" />
<classifierList>

<classifier name="CL1" content="Subject" />
<classifier name="CL2" content="Title" horizontalAtTop="true" />
<classifier name="CL3" content="Organization" />
<classifier name="CL4" content="Keyword" />

</classifierList>
</serviceRack>
<serviceRack name="PhindPhraseBrowse" />
<serviceRack name="GS2MGPPSearch">

<defaultLevel name="Sec" />
<levelList>

<level name="Doc" />
<level name="Sec" />
<level name="Para" />

</levelList>
<fieldList>

<field shortname="ZZ" name="allfields" />
<field shortname="TX" name="text" />
<field shortname="TI" name="Title" />
<field shortname="SU" name="Subject" />
<field shortname="ORG" name="Organization" />
<field shortname="SO" name="Source" />

</fieldList>
<searchTypeList>

<searchType name="plain" />
<searchType name="form" />

</searchTypeList>
<defaultIndex name="idx" />
<indexList>

<index name="idx" />
</indexList>

</serviceRack>
</serviceRackList>

</buildConfig>

Figure 5: Sample buildConfig.xml file (mgppdemo collection)

20

<gsf:template match=’documentNode’>
<td><gsf:link><gsf:metadata name=’Keyword’/></gsf:link></td>

</gsf:template>

Table 4 shows the set of ’gsf’ (Greenstone Format) elements. If you have
come from a Greenstone 2 background, Appendix D shows Greenstone 2 format
elements and their equivalents in Greenstone 3 .

The <gsf:metadata> elements are used to output metadata values. The sim-
plest case is <gsf:metadata name=’Title’/>—this outputs the Title metadata
for the current document or section. Namespaces are important here: if the Title
metadata is in the Dublin Core (dc) namespace, then the element should look like
<gsf:metadata name=’dc.Title’/>. There are three other attributes for this el-
ement. The attribute multiple is used when there may be more than one value
for the selected metadata. For instance, one document may fall into several clas-
sification categories, and therefore may have multiple Subject metadata values.
Adding multiple=’true’ to the <gsf:metadata> element will retrieve all values,
not just the first one. Multiple values are separated by commas by default. The
separator attribute is used to change the separating string. For example, adding
separator=’: ’ to the element will separate all values by a colon and a space.

Sometimes you may want to display metadata values for sections other than the
current one. For example, in the mgppdemo collection, in a search list we display
the Titles of all the enclosing sections, followed by the Title of the current section,
all separated by semi-colons. The display ends up looking something like: Farming
snails 2; Starting out; Selecting your snails where Selecting your snails is the Title
of the section in the results list, and Farming snails 2 and Starting out are the Titles
of the enclosing sections. The select attribute is used to display metadata for
sections other than the current one. Table 5 shows the options available for this
attribute. The separator attribute is used here also, to specify the separating text.

To get the previous metadata, the format statement would have the following
in it:

<gsf:metadata name=’Title’ select=’ancestors’ separator=’; ’/>;
<gsf:metadata name=’Title’/>

The <gsf:choose-metadata element selects the first available metadata value
from the list of options.

<gsf:choose-metadata>
<gsf:option name=’dc.Title’/>
<gsf:option name=’dls.Title’/>
<gsf:option name=’Title’/>

</gsf:choose-metadata>

This will display the dls.Title metadata if available, otherwise it will use the
dc.Title metadata if available, otherwise it will use the Title metadata. If there are
no values for any of these metadata elements, then nothing will be displayed.

The <gsf:switch> element allows different formatting depending on the value
of a specified metadata element. For example, the following switch statement could

21

Table 4: Format elements for GSF format language
Element Description
<gsf:text/> The document’s text
<gsf:link>...</gsf:link> The HTML link to the document itself
<gsf:link type=’document’>...
</gsf:link>

Same as above

<gsf:link type=’classifier’>...
</gsf:link>

A link to a classification node (use in classifierNode
templates)

<gsf:link type=’source’>...
</gsf:link>

The HTML link to the original file—set for doc-
uments that have been converted from e.g. Word,
PDF, PS

<gsf:icon/> An appropriate icon
<gsf:icon type=’document’/> same as above
<gsf:icon type=’classifier’/> bookshelf icon for classification nodes
<gsf:icon type=’source’/> An appropriate icon for the original file e.g. Word,

PDF icon
<gsf:metadata name=’Title’/> The value of a metadata element for the current doc-

ument or section, in this case, Title
<gsf:metadata name=’Title’
select=’select-type’
[separator=’y’ multiple=’true’]/>

A more extended selection of metadata values. The
select field can be one of those shown in Table 5.
There are two optional attributes: separator gives a
String that will be used to separate the fields, de-
fault is “, “, and if multiple is set to true, looks for
multiple values at each section.

<gsf:choose-metadata>
<gsf:metadata name=’metaA’/>
<gsf:metadata name=’metaB’/>
<gsf:metadata name=’metaC’/>
</gsf:choose-metadata>

A choice of metadata. Will select the first existing
one. the metadata elements can have the select, sep-
arator and multiple attributes like normal.

<gsf:switch preprocess=
’preprocess-type’>
<gsf:metadata name=’Title’/>
<gsf:when test=’test-type’
test-value=’xxx’>...</gsf:when>
<gsf:when test=’test-type’
test-value=’yyy’>...</gsf:when>
<gsf:otherwise>...</gsf:otherwise>
</gsf:switch>

switch on the value of a particular metadata - the
metadata is specified in gsf:metadata, has the same
attributes as normal.

Table 5: Select types for metadata format elements
Select Type Description
current The current section
parent The immediate parent section
ancestors All the parents back to the root (topmost) section
root The root or topmost section
siblings All the sibling sections
children The immediate child sections of the current section
descendents All the descendent sections

22

Table 6: Formatting options
option name values description
coverImages true, false whether or not to display cover images

for documents
TOC true, false whether or not to display the table of

contents for the document

be used to display a different icon for each document in a list depending on which
organisation it came from.

<gsf:switch metadata=’Organization’ preprocess=’toLower;stripSpace’>
<gsf:when test=’equals’ test-value=’bostid’>

<!-- output BOSTID image --></gsf:when>
<gsf:when test=’equals’ test-value=’worldbank’>

<!-- output world bank image --></gsf:when>
<gsf:otherwise><!-- output default image--></gsf:otherwise>

</gsf:switch>

Preprocessing of the metadata value is optional. The preprocess types are
toLower (make the value lowercase), toUpper (make the value uppercase), stripSpace
(removes any whitespace from the value). These operations are carried out on the
value of the selected metadata before the test is carried out. Multiple processing
types can be specified, separated by ; and they will be applied in the order specified
(from left to right).

Each option specifies a test and a test value. Test values are just text. Tests
include startsWith, contains, exists, equals, endsWith. Exists doesn’t need
a test value. Having an otherwise option ensures that something will be displayed
even when none of the tests match.

If none of the gsf elements meets your needs for formatting, XSLT can be en-
tered directly into the format element, giving the collection designer full flexibility
over how the collection appears.

The collection specific templates are added into the configuration file collectionConfig.xml.
Any templates found in the XSLT files can be overridden. The important part to
adding templates into the configuration file is determining where to put them. For-
matting templates cannot go just anywhere—there are standard places for them.
Figure 6 shows the positions that templates can occur.

There are also formatting instructions that are not templates but are options.
These are described in Table 6. They are entered into the configuration file like
<gsf:option name=’coverImages’ value=’false’/>

Note, format templates are added into the XSLT files before transforming,
while the options are added into the page source, and used in tests in the XSLT.

2.6 Customising the interface

Format statements in the collection configuration files provide a way to change
small parts of the collection display. For large scale customisations to a collection,

23

<collectionConfig>
<metadataList/>
<displayItemList/>
<search>
<format> <!--Put here templates related to searching and

the query page. The common one is the documentNode
template -->

<gsf:template match=’documentNode’>...</gsf:template>
</format>

</search>
<browse>
<classifier name=’xx’>

<format><!-- put here templates related to formating a
particular classifier page. Common ones are documentNode
and classifierNode templates-->
<gsf:template match=’documentNode’>...</gsf:template>
<gsf:template match=’classifierNode’>...</gsf:template>
<gsf:template match=’classifierNode’ mode=’horizontal’>...
</gsf:template>

</format>
</classifier>
<classifier>...</classifier>
<format><!-- formatting for all the classifiers. these will

be overridden by any classifier specific formatting
instructions --></format>

</browse>
<display>
<format><!-- here goes any formatting relating to the display

of the documents. These are generally named templates,
and format options -->

<gsf:template name=’documentContent’>...</gsf:template>
<gsf:option name=’TOC’ value=’true’/>

</format>
</display>

</collectionConfig>

Figure 6: Places for format statements

24

or ones that apply to a site as a whole, a second mechanism is available. The
interface is defined by a set of XSLT files that transform the page data into HTML.
Any of these files can be overridden to provide specialised display, on a site or
collection basis.

The first section looks at customizing the existing interface, while the second
section looks at defining a whole new interface. The last section describes how to
ad a new language translation of an interface.

2.6.1 Modifying an existing interface

Most of an interface is defined by XSLT files, which are stored in $GSDL3HOME/-

web/interfaces/interface-name/transform. These can be changed and the
changes will take effect straight away. If changes only apply to certain collections
or sites, not everything that uses the interface, you can override some of the files
by putting new ones in a different place. XSLT files are looked for in the following
order: collection, site, interface, default interface. (This currently only apples to
sites, and therefore collections, that reside in the same Greenstone installation as
the interface.)

Sites and collections can have a transform directory, which is where customised
XSLT files should go. Any XSLT files in here will be used in preference to the
interface files when using this collection. For example, if you want to have a
completely different layout for the about page of a collection, you can put a new
about.xsl file into the collection’s transform directory, and this will be used in-
stead. This is what we do for the Gutenberg sample collection.

This also applies to files that are included from other XSLT files. For exam-
ple the query.xsl for the query pages includes a file called querytools.xsl. To have
a particular site show a different query interface either of these files may need
to be modified. Creating a new version of either of these and putting it in the
site transform directory will work. Either the new query.xsl will include the de-
fault querytools, or the default query.xsl will include the new querytools.xsl. The
xsl:include directives are preprocessed by the java code and full paths added based
on availability of the files, so that the correct one is used.

Note that you cannot include a file with the same name as the including file.
For example query.xsl cannot include query.xsl (it is tempting to want to do this
if you just want to change one template for a particular file, and then include the
default. but you cant).

2.6.2 Defining a new interface

A new interface may be needed if different instantiations of the library require
different interfaces, or different developers want their own look and feel. Creating
a new interface will allow modifications to be made while leaving the original one
intact.

25

A new interface needs a directory in $GSDL3HOME/web/interfaces, the name
of this directory becomes the interface name. Inside, it needs images and transform
directories, and an interfaceConfig.xml file. Any XSLT may be overridden for a
new interface by putting the replacement in the new transform directory. If the
appropriate XSLT file is not there, the one from the default interface will be used -
this enables just overriding a few XSLT files as needed.

To use a new interface, the Tomcat web.xml must be edited: either change the
interface that a current servlet instance is using, or add another servlet instantiation
to the file (see Section 1.4 or Appendix B). The Tomcat server must be restarted
for this to take effect.

2.6.3 Changing the interface language

The interface language can be changed by going to the preferences page, and
choosing a language from the list, which includes all languages into which the
interface has been translated.

It is easy to add a new interface language to Greenstone . Language specific
text strings are separated out from the rest of the system to allow for easy incorpo-
ration of new languages. These text strings are contained in Java resource bundle
properties files. These are plain text files consisting of key-value pairs, located
in resources/java. Each interface has one named interface name.properties

(where ‘name’ is the interface name). Each service class has one with the same
name as the class (e.g. GS2Search.properties). To add another language all of
the base .properties files must be translated. The translated files keep the same
names, but with a language extension added. For example, a French version of
interface default.propertieswould be named interface default fr.properties.

Keys will be looked up in the properties file closest to the specified language.
For example, if language fr CA was specified (french language, country Canada),
and the default locale was en GB, java would look at properties files in the fol-
lowing order, until it found the key: XXX fr CA.properties, XXX fr.properties,
XXX en GB.properties, then XXX en.properties, and finally the default XXX.properties.

These new files are available straight away—to use the new language, add e.g.
l=fr to the arguments in the URL. To get Greenstone to add it in to the list of
languages on the preferences page, an entry needs to be added into the languagss
list in the interfaceConfig.xml file (see Section 1.5.2). Modification of this file
requires a restart of the Tomcat server for the changes to be recognised.

26

Library
Servlet

Receptionist

MessageRouter

Collection
demoTextQuery

Service

MetadataRetrieve
Service

Query
Action

Page
Action

Action
Process

Action
Browse

Service
ResourceRetrieve

CollectionFormation
ServiceCluster

ClassifierBrowse
Service

ClassifierBrowse
Service

MetadataRetrieve
Service

Service
ResourceRetrieve

ImportCollection
Service

BuildCollection
Service

ActivateCollection
Service

AddDocument
Service

TextQuery
Service

Action
Document

GS2MGPPRetrieve

GS2MGPPSearch

Collection
fao

GS2Browse
GS2MGPPRetrieve

GS2Browse

GS2Construct

Service
PhindApplet

PhindPhraseBrowse

GS2MGPPSearch

Figure 7: A simple stand-alone site.

3 Developing Greenstone 3: Run-time system

[TODO: rewrite this!!] runtime object structure diagram. describe the modules.
class hierarchy,
directory structure and where everything lives
message format.
overall description of message passing sequence.
configuration process - start up and runtime

page generation
accessing the javadoc

3.1 Overview of modules??

A Greenstone 3 ’library’ system consists of many components: MessageRouter,
Receptionist, Actions, Collections, ServiceRacks etc. Figure 7 shows how they fit
together in a stand-alone system.

MessageRouter: this is the central module for a site. It controls the site, loading
up all the collections, clusters, communicators needed. All messages pass through
the MessageRouter. Communication between remote sites is always done between
MessageRouters, one for each site.

Collection and ServiceCluster: these are very similar. They both provide some
metadata about the collection/cluster, and a list of services. The services are pro-
vided by ServiceRack objects that the collection/cluster loads up. A Collection is
a specific type of ServiceCluster. A ServiceCluster groups services that are related

27

conceptually, e.g. all the building services may be part of a cluster. What is part
of a cluster is specified by the site configuration file. A Collection’s services are
grouped by the fact that they all operate on some common data—the documents
in the collection. Functionally Collection and ServiceCluster are very similar, but
conceptually, and to the user, they are quite different.

Service: these provide the core functionality of the system e.g. searching, re-
trieving documents, building collections etc. One or more may be grouped into a
single class (ServiceRack) for code reuse, or to avoid instantiating the same objects
several times. For example, MGPP searching services all need to have the index
loaded into memory. Services provide the core functionality for the system, e.g.
searching, retrieving documents, building collections etc.

Communicator/Server: these facilitate communication between remote mod-
ules. For example, if you want MR1 to talk to MR2, you need a Communicator-
Server pair. The Server sits on top of MR2, and MR1 talks to the Communicator.
Each communication type needs a new pair. So far we have only been using SOAP,
so we have a SOAPCommunicator and a SOAPServer.

Receptionist: this is the point of contact for the ’front end’. Its core function-
ality involves routing requests to the Actions, but it may do more than that. For
example, a Receptionist may: modify the request in some way before sending it to
the appropriate Action; add some data to the page responses that is common to all
pages; transform the response into another form using XSLT for example. There is
a hierarchy of different Receptionist types, which is described in Section 3.8.1.

Actions: these do the job of creating the ’pages’. There is a different action for
each type of page, for example PageAction handles semi-static pages, QueryAc-
tion handles queries, DocumentAction displays documents. They know a little bit
about specific service types. Based on the ’CGI’ arguments passed in to them, they
construct requests for the system, and put together the responses into data for the
page. This data is returned to the Receptionist, which may transform it to HTML.
The various actions are described in more detail in Section 3.8.

3.2 Start up configuration

We use the Tomcat web server, which operates either stand-alone in a test mode
or in conjunction with the Apache web server. The Greenstone LibraryServlet
class is loaded by Tomcat and the servlet’s init() method is called. Each time a
get/put/post (etc.) is used, a new thread is started and doGet()/doPut()/doPost()

(etc.) is called.
The init() method creates a new Receptionist and a new MessageRouter. De-

fault classes (DefaultReceptionist, MessageRouter) are used unless subclasses have
been specified in the servlet initiation parameters (see Section 1.4). The appropri-
ate system variables are set for each object (interface name, site name, etc.) and
then configure() is called on both. The MessageRouter handle is passed to the
Receptionist. The servlet then communicates only with the Receptionist, not with
the MessageRouter.

28

The Receptionist reads in the interfaceConfig.xml file, and loads up all the
different Action classes. Other Actions may be loaded on the fly as needed. Ac-
tions are added to a map, with shortnames for keys. Eg the QueryAction is added
with key ’q’. The Actions are passed the MessageRouter reference too. If the
Receptionist is a TransformingReceptionist, a mapping between shortnames and
XSLT file names is also created.

The MessageRouter reads in its site configuration file siteConfig.xml. It
creates a module map that maps names to objects. This is used for routing the mes-
sages. It also keeps small chunks of XML—serviceList, collectionList, clusterList
and siteList. These are what get returned in response to a describe request (see
Section 3.5.). Each ServiceRack specified in the configuration file is created, then
queried for its list of services. Each service name is added to the map, pointing to
the ServiceRack object. Each service is also added to the serviceList. After this
stage, ServiceRacks are transparent to the system, and each service is treated as a
separate module. ServiceClusters are created and passed the <serviceCluster>

element for configuration. They are added to the map as is, with the cluster name
as a key. A serviceCluster is also added to the serviceClusterList. For each site
specified, the MessageRouter creates an appropriate type of Communicator object.
Then it tries to get the site description. If the server for the remote site is up and
running, this should be successful. The site will be added to the mapping with its
site name as a key. The site’s collections, services and clusters will also be added
into the static xml lists. If the server for the remote site is not running, the site will
not be included in the siteList or module map. To try again to access the site, either
Tomcat must be restarted, or a run-time reconfigure-sites commands must be sent
(see next section).

The MessageRouter also looks inside the site’s collect directory, and loads
up a Collection object for each valid collection found.

The Collection object reads its buildConfig.xml and collectionConfig.xml

files, determines the metadata, and loads ServiceRack classes based on the names
specified in buildConfig.xml. The <serviceRack> XML element is passed to
the object to be used in configuration. The collectionConfig.xml contents are
also passed in to the ServiceRacks. Any format or display information that the
services need must be extracted from the collection configuration file. Collection
objects are added to the module map with their name as a key, and also a collection
element is added into the collectionList XML.

3.3 Message passing

Action in Greenstone 3 is originated by a request coming in from the outside.
In the standard web-based Greenstone , this comes from a servlet into the recep-
tionist. This external type request is a request for a page of data, and contains a
representation of the CGI style arguments. A page of XML is returned, which can
be in HTML format or other depending on the output parameter to the request.
Messages inside the system all follow the same basic format: message elements

29

contain multiple request elements, or multiple response elements. Messaging is all
synchronous. The same number of responses as requests will be returned.

When a page request comes in to the Receptionist, it looks at the action at-
tribute to determine which action to send it to. The response is returned from
the action.The page that the receptionist returns contains the original request, the
response from the action and other info as needed (depends on the type of Recep-
tionist). The data may be transformed in some way — for the servlet Greenstone
we transform using XSLT to generate html pages which get returned to the servlet.

Actions send internal style messages to the MessageRouter. Some can be an-
swered by it, others are passed on to collections, and maybe on to services. Internal
requests are for simple actions, such as search, retrieve metadata, retrieve document
text There are different request types: describe, process, system...

The message formats for each request type, and the response formats for each
module are described in the following section.

3.4 an attempt at an API: message formats

3.4.1 external− >action

request: These are the special ’external’-style messages. Requests originate from
outside Greenstone , for example from a servlet, or java application. They are
requests for a ’page’ of data—for example, the home page for a site; the query
page for a collection; the text of a document. They contain, in XML, a list of
arguments specifying what type of page is required. If the external context is a
servlet, the arguments represent the ’CGI’ arguments in a Greenstone URL. The
two main arguments are a (action) and sa (subaction). All other arguments are
encoded as parameters.

Here are some examples of requests7:

<request type=’page’ action=’p’ subaction=’about’
lang=’fr’ output=’html’>

<paramList>
<param name=’c’ value=’demo’/>

</paramList>
</request>

<request type=’page’ action=’q’ lang=’en’ output=’html’>
<paramList>

<param name=’s’ value=’TextQuery’/>
<param name=’c’ value=’demo’/>
<param name=’rt’ value=’r’/>
<!-- the rest are the service specific params -->
<param name=’ca’ value=’0’/> <!-- casefold -->
<param name=’st’ value=’1’/> <!-- stem -->
<param name=’m’ value=’10’/> <!-- maxdocs -->

7In a servlet context, these correspond to the URLs a=p&sa=about&c=demo&l=fr, and
a=q&l=en&s=TextQuery&c=demo&rt=r&ca=0&st=1&m=10&q=snail.

30

Argument Meaning Typical values
a action a (applet), q (query), b (browse), p (page), pr (process)

s (system)
sa subaction home, about (page action)
c collection or demo, build

service cluster
s service name TextQuery, ImportCollection
rt request type d (display), r (request), s (status)
ro response only 0 or 1 - if set to one, the request is carried out

but no processing of the results is done
currently only used in process actions

o output type XML, html, WML
l language en, fr, zh ...
d document id HASHxxx
r resource id ???
pid process handle an integer identifying a particular process request

Table 7: Generic arguments that can appear in a Greenstone URL

<param name=’q’ value=’snail’/> <!-- query string -->
</paramList>

</request>

The Receptionist routes the message to the appropriate Action (determined by
looking up its shortname− >Action object map). The actions determine what
information is needed from the server and retrieves it, making one or more internal
requests to the MessageRouter. This information is gathered together into a single
response, and returned to the Receptionist. The Receptionist may process the result
further, depending on what type of Receptionist is it.

3.5 ’describe’-type messages

The most basic of the internal standard requests is “describe-yourself”, which can
be sent to any module in the system. The module responds with a semi-predefined
piece of XML, making these requests very efficient. The response is predefined
apart from any language-specific text strings, which are put together as each request
comes in, based on the language attribute of the request.

<request lang=’en’ type=’describe’ to=’’/>

If the to field is empty, a request is answered by the MessageRouter. An example
response from a MessageRouter might look like this:

<response lang=’en’ type=’describe’>
<serviceList/>
<siteList>

<site name=’org.greenstone.gsdl1’
address=’http://localhost:8080/soap/servlet/rpcrouter’
type=’soap’ />

</siteList>

31

<serviceClusterList>
<serviceCluster name="build" />

</serviceClusterList>
<collectionList>

<collection name=’org.greenstone.gsdl1/
org.greenstone.gsdl2/fao’ />

<collection name=’org.greenstone.gsdl1/demo’ />
<collection name=’org.greenstone.gsdl1/fao’ />
<collection name=’myfiles’ />

</collectionList>
</response>

This MessageRouter has no individual site-wide services (an empty <serviceList>),
but has a service cluster called build (which provides collection importing and
building functionality). It communicates with one site, org.greenstone.gsdl1.
It is aware of four collections. One of these, myfiles, belongs to it; the other three
are available through the external site. One of those collections is actually from a
further external site.

It is possible to ask just for a specific part of the information provided by a
describe request, rather than the whole thing. For example, these two messages get
the collectionList and the siteList respectively:

<request lang=’en’ type=’describe’ to=’’>
<paramList>

<param name=’subset’ value=’collectionList’/>
</paramList>

</request>

<request lang=’en’ type=’describe’ to=’’>
<paramList>

<param name=’subset’ value=’siteList’/>
</paramList>

</request>

When a collection or service cluster is asked to describe itself, what is returned
is a list of metadata, some display elements, and a list of services. For example,
here is such a message, along with a sample response.

<request lang=’en’ type=’describe’ to=’mgppdemo’/>

<response from="mgppdemo" type="describe">
<collection name="mgppdemo">

<displayItem lang="en" name="name">greenstone mgpp demo
</displayItem>
<displayItem lang="en" name="description">This is a
demonstration collection for the Greenstone digital
library software. It contains a small subset (11 books)
of the Humanity Development Library. It is built with
mgpp.</displayItem>

<displayItem lang="en" name="icon">mgppdemo.gif</displayItem>
<serviceList>
<service name="DocumentStructureRetrieve" type="retrieve" />

32

<service name="DocumentMetadataRetrieve" type="retrieve" />
<service name="DocumentContentRetrieve" type="retrieve" />
<service name="ClassifierBrowse" type="browse" />
<service name="ClassifierBrowseMetadataRetrieve"

type="retrieve" />
<service name="TextQuery" type="query" />
<service name="FieldQuery" type="query" />
<service name="AdvancedFieldQuery" type="query" />
<service name="PhindApplet" type="applet" />

</serviceList>
<metadataList>
<metadata name="creator">greenstone@cs.waikato.ac.nz</metadata>
<metadata name="numDocs">11</metadata>
<metadata name="buildType">mgpp</metadata>
<metadata name="httpPath">http://kanuka:8090/gsdl3/sites/

localsite/collect/mgppdemo</metadata>
</metadataList>

</collection>
</response>

The subset parameter can also be used in a describe request to a collection, to
retrieve just the metadataList or serviceList.

This collection provides many typical services. Notice how this response lists
the services available, while the collection configuration file for this collection
(Figure 4) described serviceRacks. Once the service racks have been configured,
they become transparent in the system, and only services are referred to. There are
three document retrieval services, for structural information, metadata, and con-
tent. The Classifier services retrieve classification structure and metadata. These
five services were all provided by the GS2MGPPRetrieve ServiceRack. The three
query services were provided by GS2MGPPSearch serviceRack, and provide dif-
ferent kinds of query interface. The last service, PhindApplet, is provided by the
PhindPhraseBrowse serviceRack and is an applet service.

A describe request sent to a service returns a list of parameters that the service
accepts, some display information, (and in future may describe the content type for
the request and response).

Parameters can by in the following formats:

<param name=’xxx’ type=’integer|boolean|string|invisible’ default=’yyy’/>
<param name=’xxx’ type=’enum_single|enum_multi’ default=’aa’/>

<option name=’aa’/><option name=’bb’/>...
</param>
<param name=’xxx’ type=’multi’ occurs=’4’>
<param .../>
<param .../>

</param>

If no default is specified, the parameter is assumed to be mandatory. Here are
some examples of parameters:

<param name=’case’ type=’boolean’ default=’0’/>

33

<param name=’maxDocs’ type=’integer’ default=’50’/>

<param name=’index’ type=’enum’ default=’dtx’>
<option name=’dtx’/>
<option name=’stt’/>
<option name=’stx’/>

<param>

<!-- this one is for the text box and field list for the
simple field query-->
<param name=’simpleField’ type=’multi’ occurs=’4’>

<param name=’fqv’ type=’string’/>
<param name=’fqf’ type=’enum_single’>

<option name=’TI’/><option name=’AU’/><option name=’OR’/>
</param>

</param>

The type attribute is used to determine how to display the parameters on a web
page or interface. For example, a string parameter may result in a text entry box,
a boolean an on/off button, enum single/enum multi a drop-down menu, where
one or many items, respectively, can be selected. A multi-type parameter indicates
that two or more parameters are associated, and should be displayed appropriately.
For example, in a field query, the text box and field list should be associated. The
occurs attribute specifies how many times the parameter should be displayed on the
page. Parameters also come with display information: all the text strings needed to
present them to the user. These include the name of the parameter and the display
values for any options. These are included in the above parameter descriptions in
the form of <displayItem> elements.

A service description also contains some display information—this includes
the name of the service, and the text for the submit button.

Here is a sample describe request to the FieldQuery service of collection mgp-
pdemo, along with its response. The parameters in this example include their dis-
play information. Figure 8 gives an example html search form that may be gener-
ated from this describe response.

<request lang="en" to="mgppdemo/FieldQuery" type="describe" />

<response from="mgppdemo/FieldQuery" type="describe">
<service name="FieldQuery" type="query">

<displayItem name="name">Form Query</displayItem>
<displayItem name="submit">Search</displayItem>
<paramList>
<param default="Doc" name="level" type="enum_single">

<displayItem name="name">Granularity to search at</displayItem>
<option name="Doc">
<displayItem name="name">Document</displayItem>

</option>
<option name="Sec">

34

<displayItem name="name">Section</displayItem>
</option>
<option name="Para">
<displayItem name="name">Paragraph</displayItem>

</option>
</param>
<param default="1" name="case" type="boolean">

<displayItem name="name">Turn casefolding </displayItem>
<option name="0">
<displayItem name="name">off</displayItem>

</option>
<option name="1">
<displayItem name="name">on</displayItem>

</option>
</param>
<param default="1" name="stem" type="boolean">

<displayItem name="name">Turn stemming </displayItem>
<option name="0">
<displayItem name="name">off</displayItem>

</option>
<option name="1">
<displayItem name="name">on</displayItem>

</option>
</param>
<param default="10" name="maxDocs" type="integer">

<displayItem name="name">Maximum documents to return
</displayItem>

</param>
<param name="simpleField" occurs="4" type="multi">

<displayItem name="name"></displayItem>
<param name="fqv" type="string">
<displayItem name="name">Word or phrase </displayItem>

</param>
<param default="ZZ" name="fqf" type="enum_single">
<displayItem name="name">in field</displayItem>
<option name="ZZ">

<displayItem name="name">allfields</displayItem>
</option>
<option name="TX">

<displayItem name="name">text</displayItem>
</option>
<option name="TI">

<displayItem name="name">Title</displayItem>
</option>
<option name="SU">

<displayItem name="name">Subject</displayItem>
</option>
<option name="ORG">

<displayItem name="name">Organization</displayItem>
</option>
<option name="SO">

<displayItem name="name">Source</displayItem>
</option>

</param>

35

Figure 8: The previous query service describe response as displayed on the search
page.

</param>
</paramList>

</service>
</response>

A describe request to an applet type service returns the applet html element:
this will be embedded into a web page to run the applet.

<request type=’describe’ to=’mgppdemo/PhindApplet’/>

<response type=’describe’>
<service name=’PhindApplet’ type=’query’>

<applet ARCHIVE=’phind.jar, xercesImpl.jar, gsdl3.jar,
jaxp.jar, xml-apis.jar’

CODE=’org.greenstone.applet.phind.Phind.class’
CODEBASE=’lib/java’
HEIGHT=’400’ WIDTH=’500’>

<PARAM NAME=’library’ VALUE=’’/>
<PARAM NAME=’phindcgi’ VALUE=’?a=a&sa=r&sn=Phind’/>
<PARAM NAME=’collection’ VALUE=’mgppdemo’ />
<PARAM NAME=’classifier’ VALUE=’1’ />
<PARAM NAME=’orientation’ VALUE=’vertical’ />
<PARAM NAME=’depth’ VALUE=’2’ />
<PARAM NAME=’resultorder’ VALUE=’L,l,E,e,D,d’ />
<PARAM NAME=’backdrop’ VALUE=’interfaces/default/>
images/phindbg1.jpg’/>
<PARAM NAME=’fontsize’ VALUE=’10’ />
<PARAM NAME=’blocksize’ VALUE=’10’ />
The Phind java applet.

</applet>
<displayItem name="name">Browse phrase hierarchies</displayItem>

36

</service>
</response>

Note that the library parameter has been left blank. This is because library
refers to the current servlet that is running and the name is not necessarily known
in advance. So either the applet action or the Receptionist must fill in this parameter
before displaying the html.

3.5.1 ’system’-type messages

“System” requests are used to tell a MessageRouter, Collection or ServiceCluster
to update its cached information and activate or deactivate other modules. For
example, the MessageRouter has a set of Collection modules that it can talk to. It
also holds some XML information about those collections—this is returned when a
request for a collection list comes in. If a collection is deleted or modified, or a new
one created, this information may need to change, and the list of available modules
may also change. Currently they are initiated by particular CGI parameters (see
Section 1.6).

The basic format of a system request is as follows:

<request type=’system’ to=’’>
<system .../>

</request>

One or more actual requests are specified in system elements. The following
are examples:

<system type=’configure’ subset=’’/>
<system type=’configure’ subset=’collectionList’/>
<system type=’activate’ moduleType=’collection’ moduleName=’demo’/>
<system type=’deactivate’ moduleType=’site’ moduleName=’site1’/>

The first request reconfigures the whole site—the MessageRouter goes through
its whole configure process again. The second request just reconfigures the collectionList—
the MessageRouter will delete all its collection information, and re-look through
the collect directory and reload all the collections again. The third request is to
activate collection demo. This could be a new collection, or a reactivation of an old
one. If a collection module already exists, it will be deleted, and a new one loaded.
The final request deactivates the site site1—this removes the site from the siteList
and module map, and also removes any of that sites collections/services from the
static lists.

A response just contains a status message, for example:

<response from="">
<status>collectionList reconfigured successfully</status>

</response>

At some stage, an error or status code should be included.
System requests are mainly answered by the MessageRouter. However, Col-

lections and ServiceClusters will respond to a subset of these requests.

37

3.6 ’format’-type messages

Collection designers are able to specify how their collection looks to a certain
degree. They can specify format statements for display that will apply to the results
of a search, the display of a document, entries in a classification hierarchy, for
example. This info is generally service specific. All services respond to a format
request, where they return any service specific formatting information. A typical
request and response looks like this:

<request lang="en" to="mgppdemo/FieldQuery" type="format" />

<response from="mgppdemo/FieldQuery" type="format">
<format>

<gsf:template match="documentNode"><td><gsf:link>
<gsf:metadata name="Title" />(<gsf:metadata name="Source" />)
</gsf:link></td>

</gsf:template>
</format>

</response>

The actual format statements are described in Section 2.5. They are templates
written directly in XSLT, or in GSF, which stands for Greenstone Format, and is a
simple XML representation of the more complicated XSLT templates. GSF style
format statements need to be converted to proper XSLT. This is currently done
by the Receptionist (but may be moved to an ActionHelper): the format XML is
transformed to XSLT using XSLT with the config format.xsl stylesheet.

3.7 ’status’-type messages

These are only used with process-type services, which are those where a request is
sent to start some type of process (see Section 3.7.5). The initial response states
whether the process had successfully started, and whether its still continuing. If the
process is not finished, status requests can be sent repeatedly to the service to poll
the status, using the pid to identify the process. Status codes are used to identify
the state of a process. The values used at the moment are listed in Table 88.

The following shows an example status request, along with two responses, the
first a ’OK but continuing’ response, and the second a ’successfully completed’
response. The content of the status elements in the two responses is the output
from the process since the last status update was sent back.

<request lang="en" to="build/ImportCollection" type="status">
<paramList>

<param name="pid" value="2" />
</paramList>

</request>

<response from="build/ImportCollection">

8A more standard set of codes should probably be used, for example, the HTTP codes

38

Table 8: Status codes currently used in Greenstone 3
code name code meaning

value
SUCCESS 1 the request was accepted, and the process was completed
ACCEPTED 2 the request was accepted, and the process has been started, but

it is not completed yet
ERROR 3 there was an error and the process was stopped
CONTINUING 10 the process is still continuing
COMPLETED 11 the process has finished
HALTED 12 the process has stopped
INFO 20 just an info message that doesn’t imply anything

<status code="2" pid="2">Collection construction: import collection.
command = import.pl -collectdir /research/kjdon/home/gsdl3/web/sites/

localsite/collect test1
starting

</status>
</response>

<response from="build/ImportCollection">
<status code="11" pid="2">RecPlug: getting directory

/research/kjdon/home/gsdl3/web/sites/localsite/collect/test1/import
WARNING - no plugin could process /.keepme

Import Complete

* 1 document was considered for processing
* 0 were processed and included in the collection
* 1 was rejected. See /research/kjdon/home/gsdl3/web/sites/

localsite/collect/test1/etc/fail.log for a list of rejected documents
Success

</status>
</response>

3.7.1 process messages

Process requests and responses provide the major functionality of the system—
these are the ones that do the actual work. The format depends on the service they
are for, so I’ll describe these by service.

Query type services TextQuery, FieldQuery, AdvancedFieldQuery (GS2MGSearch,
GS2MGPPSearch), TextQuery (LuceneSearch) The main type of requests in the
system are for services. There are different types of services, currently: query,
browse, retrieve, process, applet, enrich. Query services do some kind of
search and return a list of document identifiers. Retrieve services can return the
content of those documents, metadata about the documents, or other resources.
Browse is for browsing lists or hierarchies of documents. Process type services are
those where the request is for a command to be run. A status code will be returned
immediately, and then if the command has not finished, an update of the status can

39

be requested. Applet services are those that run an applet. Enrich services take a
document and return the document with some extra markup added.

Other possibilities include transform, extract, accrete. These types of service
generally enhance the functionality of the first set. They may be used during col-
lection formation: ’accrete’ documents by adding them to a collection, ’transform’
the documents into a different format, ’extract’ information or acronyms from the
documents, ’enrich’ those documents with the information extracted or by adding
new information. They may also be used during querying: ’transform’ a query be-
fore using it to query a collection, or ’transform’ the documents you get back into
an appropriate form.

The basic structure of a service ’process’ request is as follows:

<request lang=’en’ type=’process’ to=’demo/TextQuery’>
<paramList/>
other elements...

</request>

The parameters are name-value pairs corresponding to parameters that were
specified in the service description sent in response to a describe request.

<param name=’case’ value=’1’/>
<param name=’maxDocs’ value=’34’/>
<param name=’index’ value=’dtx’/>

Some requests have other content—for document retrieval, this would be a list
of document identifiers to retrieve. For metadata retrieval, the content is the list of
documents to retrieve metadata for.

Responses vary depending on the type of request. The following sections look
at the process type requests and responses for each type of service.

3.7.2 ’query’-type services

Responses to query requests contain a list of document identifiers, along with some
other information, dependent on the query type. For a text query, this includes term
frequency information, and some metadata about the result. For instance, a text
query on ’snail farming’, with the parameter ’maxDocs=10’ might return the first
10 documents, and one of the query metadata items would be the total number of
documents that matched the query.9

The following shows an example query request and its response.
Find at most 10 Sections in the mgppdemo collection, containing the word

snail (stemmed), returning the results in ranked order:

<request lang=’en’ to="mgppdemo/TextQuery" type="process">
<paramList>

9no metadata about the query result is returned yet.

40

<param name="maxDocs" value="10"/>
<param name="queryLevel" value="Section"/>
<param name="stem" value="1"/>
<param name="matchMode" value="some"/>
<param name="sortBy" value="1"/>
<param name="index" value="t0"/>
<param name="case" value="0"/>
<param name="query" value="snail"/>

</paramList>
</request>

<response from="mgppdemo/TextQuery" type="process">
<metadataList>

<metadata name="numDocsMatched" value="59" />
</metadataList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"
docType=’hierarchy’ nodeType="leaf" />

<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12"
docType=’hierarchy’ nodeType="leaf" />

<documentNode nodeID="HASH010f073f22033181e206d3b7.1"
docType=’hierarchy’ nodeType="interior" />

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.2.2"
docType=’hierarchy’ nodeType="leaf" />

...
</documentNodeList>
<termList>

<term field="" freq="454" name="snail" numDocsMatch="58" stem="3">
<equivTermList>

<term freq="" name="Snail" numDocsMatch="" />
<term freq="" name="snail" numDocsMatch="" />
<term freq="" name="Snails" numDocsMatch="" />
<term freq="" name="snails" numDocsMatch="" />

</equivTermList>
</term>

</termList>
</response>

The list of document identifiers includes some information about document
type and node type. Currently, document types include simple, paged and hierarchy.
simple is for single section documents, i.e. ones with no sub-structure. paged is
documents that have a single list of sections, while hierarchy type documents
have a hierarchy of nested sections. For paged and hierarchy type documents,
the node type identifies whether a section is the root of the document, an internal
section, or a leaf.

The term list identifies, for each term in the query, what its frequency in the
collection is, how many documents contained that term, and a list of its equivalent
terms (if stemming or casefolding was used).

41

3.7.3 ’browse’-type services

Browse type services are used for classification browsing. The request consists of
a list of classifier identifiers, and some structure parameters listing what structure
to retrieve.

<request lang="en" to="mgppdemo/ClassifierBrowse" type="process">
<paramList>

<param name="structure" value="ancestors" />
<param name="structure" value="children" />

</paramList>
<classifierNodeList>

<classifierNode nodeID="CL1.2" />
</classifierNodeList>

</request>

<response from="mgppdemo/ClassifierBrowse" type="process">
<classifierNodeList>

<classifierNode nodeID="CL1">
<nodeStructure>

<classifierNode nodeID="CL1">
<classifierNode nodeID="CL1.2">

<classifierNode nodeID="CL1.2.1" />
<classifierNode nodeID="CL1.2.2" />
<classifierNode nodeID="CL1.2.3" />
<classifierNode nodeID="CL1.2.4" />
<classifierNode nodeID="CL1.2.5" />

</classifierNode>
</classifierNode>

</nodeStructure>
</classifierNode>

</classifierNodeList>
</response>

Possible values for structure parameters are ancestors, parent, siblings,
children, descendents. The response gives, for each identifier in the request,
a <nodeStructure> element with all the requested structure put together into a
hierarchy. The structure may include classifier and document nodes.

3.7.4 ’retrieve’-type services

Retrieval services are special in that requests are not explicitly initiated by a user
from a form on a web page, but are called from actions in response to other things.
This means that their names are hard-coded into the Actions. DocumentContentRe-
trieve, DocumentStructureRetrieve and DocumentMetadataRetrieve are the stan-
dard names for retrieval services for content, structure, and metadata of documents.
Requests to each of these include a list of document identifiers. Because these gen-
erally refer to parts of documents, the elements are called <documentNode>. For
the content, that is all that is required. For the metadata retrieval service, the re-
quest also needs parameters specifying what metadata is required. For structure

42

retrieval services, requests need parameters specifying what structure or structural
info is required.

Some example requests and responses follow.
Give me the Title metadata for these documents:

<request lang="en" to="mgppdemo/DocumentMetadataRetrieve" type="process">
<paramList>

<param name="metadata" value="Title" />
</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"/>
<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12"/>
<documentNode nodeID="HASH010f073f22033181e206d3b7.1"/>
...

</documentNodeList>
</request>

<response from="mgppdemo/DocumentMetadataRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<metadataList>

<metadata name="Title">Putting snails in your second pen</metadata>
</metadataList>

</documentNode>
<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12">
<metadataList>

<metadata name="Title">Now you must decide</metadata>
</metadataList>

</documentNode>
<documentNode nodeID="HASH010f073f22033181e206d3b7.1">
<metadataList>

<metadata name="Title">Introduction</metadata>
</metadataList>

</documentNode>
</documentNodeList>

</response>

One or more parameters specifying metadata may be included in a request.
Also, a value of all will retrieve all the metadata for each document.

Any browse-type service must also implement a metadata retrieval service to
provide metadata for the nodes in the classification hierarchy. The name of it is the
browse service name plus MetadataRetrieve. For example, the ClassifierBrowse
service described in the previous section should also have a ClassifierBrowseMeta-
dataRetrieve service. The request and response format is exactly the same as for
the DocumentMetadataRetrieve service, except that <documentNode> elements are
replaced by <classifierNode> elements (and the corresponding list element is
also changed).

Give me the text (content) of this document:

<request lang="en" to="mgppdemo/DocumentContentRetrieve" type="process">

43

<paramList />
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2" />
</documentNodeList>

</request>

<response from="mgppdemo/DocumentContentRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<nodeContent><Section>
<P ALIGN="JUSTIFY"></P>
<P ALIGN="JUSTIFY">190. When the plants in
your second pen have grown big enough to provide food and
shelter, you can put in the snails.</P>

</nodeContent>
</documentNode>

</documentNodeList>
</response>

The content of a node is returned in a <nodeContent> element. In this case it
is escaped HTML.

Give me the ancestors and children of the specified node, along with the num-
ber of siblings it has:

<request lang="en" to="mgppdemo/DocumentStructureRetrieve" type="process">
<paramList>

<param name="structure" value="ancestors" />
<param name="structure" value="children" />
<param name="info" value="numSiblings" />

</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2" />
</documentNodeList>

</request>

<response from="mgppdemo/DocumentStructureRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<nodeStructureInfo>

<info name="numSiblings" value="2" />
</nodeStructureInfo>
<nodeStructure>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd"
docType=’hierarchy’ nodeType="root">

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4"
docType=’hierarchy’ nodeType="interior">

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"
docType=’hierarchy’ nodeType="leaf" />

</documentNode>
</documentNode>

</nodeStructure>
</documentNode>

</documentNodeList>
</response>

44

Structure is returned inside a <nodeStructure> element, while structural info
is returned in a <nodeStructureInfo> element. Possible values for structure pa-
rameters are as for browse services: ancestors, parent, siblings, children,
descendents. Possible values for info parameters are numSiblings, siblingPosition,
numChildren.

3.7.5 ’process’-type services

Requests to process-type services are not requests for data—they request some
action to be carried out, for example, create a new collection, or import a collection.
The response is a status or an error message. The import and build commands may
take a long time to complete, so a response is sent back after a successful start to
the command. The status may be polled by the requester to see how the process is
going.

Process requests generally contain just a parameter list. Like for any service,
the parameters used by a process-type service can be obtained by a describe request
to that service.

Here are two example requests for process-services that are part of the build
service cluster (hence the addresses all begin with ’build/’), followed by an exam-
ple response:

<request lang=’en’ type=’process’ to=’build/NewCollection’>
<paramList>

<param name=’creator’ value=’me@home.com’/>
<param name=’collName’ value=’the demo collection’/>
<param name=’collShortName’ value=’demo’/>

</paramlist>
</request>

<request lang=’en’ type=’process’ to=’build/ImportCollection’>
<paramList>

<param name=’collection’ value=’demo’/>
</paramlist>

</request>

<response from="build/ImportCollection">
<status code="2" pid="2">Starting process...</status>

</response>

The code attribute in the response specifies whether the command has been
successfully stated, whether its still going, etc (see Table 8 for a list of currently
used codes). The pid attribute specifies a process id number that can be used when
querying the status of this process. The content of the status element is (currently)
just the output from the process so far. Status messages, which are described in
Section 3.7, are used to find out how the process is going, and whether it has
finished or not.

45

3.7.6 ’applet’-type services

Applet-type services are those that process the data for an applet. A request consists
only of a list of parameters, and the response contains an <appletData> element
that contains the XML data to be returned to the applet. The format of this is
entirely specific to the applet—there is no set format to the applet data.

Here is an example request and response, used by the Phind applet:

<request type=’query’ to=’mgppdemo/PhindApplet’>
<paramList>
<param name=’pc’ value=’1’/>
<param name=’pptext’ value=’health’/>
<param name=’pfe’ value=’0’/>
<param name=’ple’ value=’10’/>
<param name=’pfd’ value=’0’/>
<param name=’pld’ value=’10’/>
<param name=’pfl’ value=’0’/>
<param name=’pll’ value=’10’/>

</paramList>
</request>

<response type=’query’ from=’mgppdemo/PhindApplet’>
<appletData>
<phindData df=’9’ ef=’46’ id=’933’ lf=’15’ tf=’296’>

<expansionList end=’10’ length=’46’ start=’0’>
<expansion df=’4’ id=’8880’ num=’0’ tf=’59’>

<suffix> CARE</suffix>
</expansion>
...

</expansionList>
<documentList end=’10’ length=’9’ start=’0’>
<document freq=’78’ hash=’HASH4632a8a51d33c47a75c559’ num=’0’>

<title>The Courier - N??159 - Sept- Oct 1996 Dossier Investing
in People Country Reports: Mali ; Western Samoa

</title>
</document>
...

</documentList>
<thesaurusList end=’10’ length=’15’ start=’0’>
<thesaurus df=’7’ id=’12387’ tf=’15’ type=’RT’>

<phrase>PUBLIC HEALTH</phrase>
</thesaurus>...

</thesaurusList>
</phindData>

</appletData>
</response>

3.7.7 ’enrich’-type services

Enrich services typically take some text of documents (inside <nodeContent>

tags) and returns the text marked up in some way. One example of this is the

46

GatePOSTag service: this identifies Dates, Locations, People and Organizations
in the text, and annotates the text with the labels. In the following example, the
request is for Location and Dates to be identified. *** TODO ****

<request lang="en" to="GatePOSTag" type="process">
<paramList>

<param name="annotationType" value="Date,Location" />
</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd">
<nodeContent>

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome 1986
P-69
ISBN 92-5-102397-2
FAO 1986

</nodeContent>
</documentNode>

</documentNodeList>
</request>

<response from="GatePOSTag" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd">
<nodeContent>

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
<annotation type="Location">Rome</annotation>

<annotation type="Date">1986</annotation>
P-69
ISBN 92-5-102397-2
FAO <annotation type="Date">1986</annotation>

</nodeContent>
</documentNode>

</documentNodeList>
</response>

3.8 Page generation

**** REDO ********
* talk general first: get data, get format info, transform gsf-¿xsl. transfrom

xml-¿html
* state saving. the XSLT files assume that arguments are saved somehow. This

needs to be implemented outside Greenstone proper - we do this in the servlet,
using something or other.

URL-style requests are received by the Receptionist. Based on the arguments,
a page of data must be returned to the servlet. As described in Section 3.4.1, the
requests are XML representations of Greenstone URLs. One of the arguments is
action (a). This tells the Receptionist which Action module to pass the request to.
Action modules decode the rest of the CGI-arguments to determine what requests
need to be made to the system. System requests are received by the Message-

47

Router, which answers them one by one, either itself or by passing them on to the
appropriate module.

Once the data needed from the system has been accumulated, it is put into a
’page’ of XML. The page is transformed to its output form, currently HTML, via
XSLT transformations, and returned to the user.

The basic page format is:

<page>
<pageRequest/>
<pageResponse/>

</page>

* show configuration and describe whats its used for
There are two main elements in the page: pageRequest, pageResponse. The

pageRequest is the original request that came into the Receptionist—this is in-
cluded so that any parameters can be preset to their previous values, for example,
the query options on the query form. The pageResponse contains all the data that
has been gathered from the system by the action. The other two elements con-
tain extra information needed by XSLT. Config contains run-time variables such
as the location of the gsdl home directory, the current site name, the name of the
executable that is running (e.g. library)—these are needed to allow the XSLT to
generate correct HTML URLs. Display contains some of the text strings needed in
the interface—these are separate from the XSLT to allow for internationalization.

The following subsections outline, for each action, what data is needed and
what requests are generated to send to the system.

Once the XML page has been put together, the page to return to the user is
created by transforming the XML using XSLT. The output is HTML at this stage,
but it will be possible to generate alternative outputs, such as XML, WML etc.
A set of XSLT files defines an ’interface’. Different users can change the look
of their web pages by creating new XSLT files for a new ’interface’. Just as we
have a sites directory where different sites ’live’ (ie where their configuration file
and collections are located), we have an interfaces directory where the different
interfaces ’live’ (ie their transforms and images are located there). The default
XSLT files are located in interfaces/default/transforms. Collections, sites and other
interfaces can override these files by having their own copy of the appropriate files.
New interfaces have their own directory inside interfaces/. Sites and collections
can have a transform directory containing XSLT files. The order in which the
XSLT files are looked for is collection, site, current interface, default interface.10

TODO describe a bit more?? currently only can get this locally

3.8.1 Receptionists

The receptionist is the controlling module for the page generation part of Green-
stone . It has the job of loading up all the actions, and it knows about the message

10this currently breaks down for remote sites - need to rethink it a bit.

48

router it and the actions are supposed to talk to. It routes messages received to the
appropriate action (page-type messages) or directly to the message router (all other
types). Receptionists also do other things, for example, adding to the page received
back from the action any information that is common to all pages.

There are different ways of providing an interface to Greenstone , from web
based CGI style (using servlets) to Java GUI applications. These different inter-
faces require slightly different responses from a receptionist, so we provide several
standard types of receptionist.

Receptionist: This is the most basic receptionist. The page it returns consists
of the original request, and the response from the action it was sent to. Meth-
ods preProcessRequest, and postProcessPage are called on the request and page,
respectively, but in this basic receptionist, they don’t do anything.

TransformingReceptionist: This extends Receptionist, and overwrites postPro-
cessPage to transform the page using XSLT. An XSLT is listed for each action in
the receptionists configuration file, and this is used to transform the page. First,
some display information, and configuration information is added to the page.
Then it is transformed using the specified XSLT for the action, and returned.

WebReceptionist: The WebReceptionist extends TransformingReceptionist. It
doesn’t do much else except some argument conversion. To keep the URLs short,
parameters from the services are given shortnames, and these are used in the web
pages.

DefaultReceptionist: This extends WebReceptionist, and is the default one for
Greenstone 3 servlets. Due to the page design, some extra information is needed
for each page: some metadata about the current collection. The receptionist sends
a describe request to the collection to get this, and appends it to the page before
transformation using XSLT.

NZDLReceptionist: (do we want to talk about this?) This is an example of a
custom receptionist. For a look-alike nzdl.org system, even more information is
needed for each page, namely the list of classifiers available from the Classifier-
Browse service.

By default, the LibraryServlet uses DefaultReceptionist. However, there is an
init-param called receptionist which can be set to make the servlet use a different
one.

3.8.2 CGI arguments

The arguments used by the page come from several sources. Receptionist uses a
couple, actions use some and services. the receptionist and actions are treated as
a whole so must not have conflicting arguments. GSParams class specifies all the
general basic arguments, and whether they should be saved or not. servlet has an
init parameter params class, that specifies which params class to use - if subclass
it. actions or receptionist may specify some new ones

services may be created by different people, may be on a different site. cant
guarantee no conflict with action params, or even with other services. so service

49

params are namespaced when they are put on the page. interface (recept and ac-
tion) params will have no namespace) the default namespace is s1 (service1) - any
parameters that are for the service will be prefixed by this. e.g. the case parameter
for a search will be put in the page as s1.case. The actions must now look for all
the s1 parameters to send to the service.

if there are two or more services combined on a page with a single submit
button, they will use s1, s2, s3 etc as needed. the s parameter (service) will end
up with a list e.g. s=TextQuery,MusicQuery, and the order of these determines the
mapping order of the namespaces, ie s1 will be TextQuery, s2 MusicQuery.

also talk about saving arguments - save ones that GSParams says to save, and
any service ones should always save.

3.8.3 Page action

* kind of info pages. other actions are associated with specific services. * uses de-
scribe requests to modules Depending on the subaction argument, different pages
can be generated. For the ’home’ page, a ’describe’ request is sent to the MessageRouter—
this returns a list of all the collections, services, serviceClusters and sites known
about. For each collection, its metadata is retrieved via a ’describe’ request. This
metadata is added into the previous result, which is then added into the page. The
page is transformed using home.xsl. For the ’about’ page, a describe request is
sent to the module that the about page is about: this may be a collection or a ser-
vice cluster. This returns a list of metadata and a list of services, and the result is
transformed using about.xsl.

3.8.4 Query action

The basic URL is a=q&s=TextQuery&c=demo&rt=d/r. There are three query ser-
vices which have been implemented: TextQuery, FieldQuery, and AdvancedField-
Query. These are all handled in the same way by query action. For each page,
the service description is requested from the service of the current collection (via
a describe request). This is currently done every time the query page is displayed,
but should be cached. The description includes a list of the parameters available
for the query, such as case/stem, max num docs to return, etc. If the request type
(rt) parameter is set to d for display, the action only needs to display the form,
and this is the only request to the service. Otherwise, the submit button has been
pressed, and a query request to the TextQuery service is sent. This has all the pa-
rameters from the URL put into the parameter list. A list of document identifiers
is returned. A followup query is sent to the MetadataRetrieve service of the col-
lection: the content includes the list of documents, with a request for some of their
metadata. Which metadata to retrieve is determined by looking through the XSLT
that will be used to transform the page (Formatter object??). The service descrip-
tion and query result are combined into a page of XML, which is transformed using
basicquery.xsl to produce the html page.

50

3.8.5 Applet action

There are two types of request to the applet action: a=a & rt=d and a=a & rt=r.
The value rt=d means “display the applet.” A describe request is sent to the
service, which returns the <applet> HTML element. The transformation file
applet.xsl embeds this into the page, and the servlet returns the HTML.

The value rt=r signals a request from the applet. The result is returned di-
rectly to the applet code, in XML. The other parameters are sent to the service
untransformed, and the result is passed directly back to the applet. Applet action
can therefore work with any applet whose service understands the messages.

Here are two examples of requests generated by the Applet action, along with
their corresponding responses.

The first request corresponds to the URL arguments a=a & rt=d & sn=Phind

& c=mgppdemo, which translate to “display the Phind applet for the mgppdemo
collection”.

The second request corresponds to the arguments a=a & rt=r & sn=Phind &

c=mgppdemo & pc=1 & pptext=health & pfe=0 & ple=10 & pfd=0 & pld=10

& pfl=0 & pll=10—this indicates a request to the service itself. The extra argu-
ments (not a, sa, sn, c) are simply copied into the request as parameters. The
response is in a form suitable for the applet, placed inside <appletData> in a stan-
dard Greenstone message. AppletAction returns the contents of appletData to the
browser, i.e. to the applet itself.

Note that the applet HTML may need to know the name of the library pro-
gram. However, that name is chosen by the person who installed the software and
will not necessarily be “library”. To get around this, the applet can put a parameter
called “library” into the applet data with a null value:

<PARAM NAME=’library’ VALUE=’’/>

When the Applet action encounters this parameter it inserts the name of the current
library servlet as its value.

3.8.6 Document action

DocumentAction sends a query to the DocumentRetrieve service of the collection
requesting the text of the specified document. At this stage no additional informa-
tion is obtained, but in future stuff like Title and table of contents would be needed
to make the display nicer.

3.8.7 System action

SystemAction allows for manual reconfiguration of various components at run-
time. There is no interactive web-page displaying the options, it merely turns a
set of CGI arguments into an XML system request. The response from a system
request is a message which is displayed to the user.

51

Table 9: Configure CGI arguments
arg description
a=s system action
sa=c|a|d type of system request: c (configure), a (add/activate),

d (delete/deactivate)
c=demo the request will go to this collection/servicecluster

instead of the message router
ss=collectionList subset for configure: only reconfigure this part.

For the MessageRouter, can be serviceClusterList, serviceList,
collectionList, siteList.
For a collection/cluster, can be metadataList or serviceList.

sn=demo
st=collection

3.8.8 Some class info - where should this go??

Table 10: The utility classes in org.greenstone.gsdl3.util
Utility class Description
ConfigVars holds the servlet startup variables, including library name, site name, inter-

face name, default language
Dictionary wrapper around a Resource Bundle, providing strings with parameter
GSCGI class to map between short name CGI arguments and long name request

parameters
GSFile class to create all Greenstone file paths e.g. used to locate configuration

files, XSLT files and collection data.
GSHTML provides convenience methods for dealing with HTML, e.g. making strings

HTML safe
GSPath used to create, examine and modify message address paths
GSStatus some static codes for status messages
GSXML lots of methods for extracting information out of Greenstone XML, and cre-

ating some common types of elements. Also has static Strings for element
and attribute names used by Greenstone .

GSXSLT some manipulation functions for Greenstone XSLT
Misc miscellaneous functions
OID class to handle Greenstone (2) OIDs
XMLConverter provides methods to create new Documents, parse Strings or Files into Doc-

uments, and convert Nodes to Strings
XMLTransformer methods to transform XML using XSLT
XSLTUtil contains static methods to be called from within XSLT

52

4 Collection building architecture

**** GEORGE **** how building actually works
the building structure/architecture
modules API

53

5 Developing Greenstone 3 : Adding new features

5.1 Creating new services

*inherit from ServiceRack - abstract base class. this handles the main process
method, determines the service name and request type. if request type is describe,
and to is empty, it returns a list of services (short service info) which is initialised
in the configure method. a describe request to a particular service results in get-
ServiceDescription being called, which must be supplied by the subclass. other
request types (process) get sent to processXXX methods, where XXX is the ser-
vice name.

* what methods are expected
*service type responses expected
*a browse type service must also implement servicenameMetadataRetrieve ser-

vice.
* should a metadata retrieval service advertise what metadata is available??
standard service type vs new service type - standard needs some xml response

syntax.

5.2 creating new actions/pages

5.3 new interfaces

e.g. java interface. where you can interface to. MR vs Receptionist. diff reception-
ists. egs, handheld - using servlet, transforming recpt, but new set of XSLT java
program other program - talk to recpt but just get back XML data for pages. java
gui - just talk to MR, do all processing itself.

5.4 Adding new classifiers

*** GEORGE ***

5.5 Adding new plugins

*** GEORGE ***

5.6 New types of collections

There are two types of standard Greenstone collections: collections built with the
Greenstone 3 building system, and collections that are imported from Greenstone
2 . There are many options to collection building but it is conceivable that these
options don’t meet the needs of all collection builders. Greenstone 3 has an ability
to use any type of collection you can come up with, assuming some java code is
provided.

54

There are four levels of customisation that may be needed with new collections:
service, collection, interface XSLT, and action levels. We will use the example
collections that come with Greenstone to describe these different levels.

Firstly, new service classes need to be written to provide the functionality to
search/browse/whatever the collection. If the services have similar interfaces and
functionality to the standard services, this may be all that is needed. For example,
the Greenstone 2 MGPP collections were the first to be served in Greenstone 3 .
When we came to do Greenstone 2 MG collections, all we had to do was write
some new service classes that interacted with MG instead of MGPP. Because these
collections used the same type of services, this was all we had to do. The format
of the configuration files was similar, they just specified MG serviceRack classes
rather than MGPP ones.

The nzmaps collection used the same level of customisation, just implementing
new services and fitting all the extra display elements into the standard query/display
framework using javascript.

The gberg collection, however, was done quite differently to the standard col-
lections. New services were provided to search the database (built with Lucene)
and to provide the documents and parts of documents (using XSLT to transform
the raw XML files). The collectionConfig file had some extra information in it: a
list of the documents in the collection along with their Titles. Because the stan-
dard collection class has no notion of document lists, a new class was created
(org.greenstone.gsdl3.collection.XMLCollection). This class is basically the same
as a standard collection class except that it looks for and stores in memory the
documentList from the collectionConfig file.

To tell Greenstone to load up a different type of collection class, we use another
configuration file: etc/collectionInit.xml. This specifies the name of the collection
class to use. Currently, this is all that is specified in that file, but you may want to
add parameters for the class etc.

<collectionInit class="XMLCollection"/>

The display for the collection is also quite different. The home page for the
collection displays the list of documents. To achieve this, the describe response
from the collection had to include the list, and a new XSLT was written for the
collection that displayed this. Collection XSLT should be put in the transform
directory of the collection11 .

Document display is significantly different to standard Greenstone . There are
two modes of display: table of contents mode, and content mode. Clicking on a
document link from the collection home page takes the user to the table of contents
for the collection. Clicking on one of the sections in the table of contents takes
them to a display of that section. To facilitate this, not only do we need new XSLT
files , we also needed a new action. XMLDocumentAction was created, that used
two subactions, toc and text, for the different modes of display.

11These are currently only used when running Greenstone in a non-distributed fashion, but it will
be added in properly at some stage

55

The Receptionist was told about this new action by the addition of the following
to the interfaceConfig.xml file:

<action name=’xd’ class=’XMLDocumentAction’>
<subaction name=’toc’ xslt=’document-toc.xsl’/>
<subaction name=’text’ xslt=’document-content.xsl’/>

</action>

XSLT files are linked to subactions rather than the action as a whole. The
collection supplies the two XSLT files written appropriately for the data it contains.

All links that link to the documents have to be changed to use the xd action
rather than the standard d action. These include the links from the home page, and
the links from query results.

Querying of the collection is almost the same as usual. The query service pro-
vides a list of parameters, does the query and then sends back a list of document
identifiers. The standard query action was fine for this collection. The change oc-
curs in the way that the results are displayed—this is accomplished using a format
statement supplied in the collectionConfig file inside the search node.

<search>
<format>
<gsf:template match="documentNode">

<xsl:param name="collName"/>
<xsl:param name="serviceName"/>
<td>

<a href="{$library_name}?a=xd&sa=text&c={$collName}&
amp;d={@nodeID}&p.a=q&p.s={$serviceName}">
<xsl:choose>
<xsl:when test="metadataList/metadata[@name=’Title’]">

<gsf:metadata name="Title"/>
</xsl:when>
<xsl:otherwise>(section)</xsl:otherwise>

</xsl:choose>

 from <a href="{$library_name}?a=xd&sa=toc&
c={$collName}&d={@nodeID}.rt&p.a=q&p.s={$serviceName}">

<gsf:metadata name="Title" select="root"/>
</td>

</gsf:template>
</format>

</search>

Instead of displaying an icon and the Title, it displays the Title of the section
and the title of the document. Both of these are linked to the document: the section
title to the content of that section, the document title to the table of contents for
the document. Because these require non-standard arguments to the library, these
parts of the template are written in XSLT not Greenstone format language. As is
shown here it is perfectly feasible to write a format statement that includes XSLT
mixed in with Greenstone format elements.

56

The document display uses CSS to format the output—these are kept in the
collection and specified in the collections XSLT files. The documents also specify
DTD files. Due to the way we read in the XML files, Tomcat sometimes has
trouble locating the DTDs. One option is to may all the links absolute links to files
in the collection folder, the other option is to put them in Greenstone ’s DTD folder
gsdl3/resources/dtd.

5.7 The NZDL mirror site

The library seen at http://www.greenstone.org/greenstone3/nzdl is like a
mirror to http://www.nzdl.org—it aims to present the same collections, in the
same way but using Greenstone 3 instead of Greenstone 2 . It uses a new site
and a new interface. The web.xml file had a new servlet entry in it to specify the
combination of nzdl site and interface.

The site was created by making a directory called nzdl in the sites folder. A
siteConfig file was created. Because its running on Linux, we were able to link to
all the collections in the old Greenstone installation. The convert coll from gs2.pl
script was run over all the collections to produce the new XML configuration files.

A new interface, also called nzdl, was created in the interfaces directory. In
many cases, creating a new interface just requires the new images and XSLT to be
added to the new directory(see Sections 1.4 and 2.6). This setup also required a bit
more customisation.

The standard Greenstone navigation bar lists all the services available for the
collection. In Greenstone 2 , the navigation bar provided the search option, and
the different classifiers. This is not service specific, but hard coded to the search
and classifiers. The XSLT that produced the navigation bar needed to be altered to
produce this. But also, a new Receptionist was needed. The standard receptionist
(DefaultReceptionist) gathers a little bit of extra info for each page of XML be-
fore transforming it: this is the list of services for the collection and their display
information, allowing the services to be listed along the navigation bar. This is
information that is needed by every page (except for the library home page) and
therefore is obtained by the receptionist instead of by each action. The nzdl inter-
face needed a bit more information than this: for the ClassifierBrowse service, if
there was one, the list of classifiers and their display elements must be obtained. So
a new Receptionist was written that inherited from DefaultReceptionist, and added
this new info into the page.

One of the servlet initialisation parameters is the receptionist class: this was
added to the servlet definition in the web.xml file so that the LibraryServlet would
load up the right receptionist class.

57

6 Distributed Greenstone

Greenstone is designed to run in a distributed fashion. One Greenstone installation
can talk to several sites on different computers. This requires some sort of commu-
nication protocol. Any protocol can be used, however we have only implemented
a simple SOAP protocol.

more explanation..

ServiceCluster

Service

Collection

Collection

Collection

MessageRouter

Collection Collection

MessageRouter

SOAP
Server

SOAP
Server

Library
Servlet

Receptionist

Action Action

Action

MessageRouter

SOAP
Communicator

SOAP
Communicator

1

2

3

Service

Service

Service

Service

Service

Service

Service

Service

Service
Service

Figure 9: A distributed digital library configuration running over several servers

We have used Apache SOAP for Java. This is run as a servlet in Tomcat. If you
have obtained Greenstone through CVS, you will need to install soap separately,
describe in Appendix C.1. Debugging soap is described in Appendix C.2.

6.1 Serving a site using soap

A script has been created to setup a SOAP server for a site. On Linux, from the
gsdl3 directory, run ./gs3-soap-deploy-site.sh <sitename> <siteuri>

Sitename is the name of the site’s directory, eg localsite. The siteuri is the
identifier that will be used for the SOAP resource, eg org.greenstone.localsite. It
should be a unique name amongst all the SOAP services that you want to connect
to.

The script makes sure that the SOAP servlet is deployed on Tomcat, and then
deploys the service for the site specified. A resource file (sitename.xml) is created
which is used to specify the service. It can be found in gsdl3/resources/soap,
and is generated from site.xml.in.

To get siteA to talk to siteB, you need to deploy a SOAP server on siteB,

58

then add a <site> element to the <siteList> of siteA’s siteConfig.xml file (in
gsdl3/web/sites/siteA/siteConfig.xml).

In the <siteList> element, add the following (substituting the chosen site uri
for siteAuri):

<site name="siteAuri"
address="http://localhost:8080/soap/servlet/rpcrouter"
type="soap"/>

(Note that localhost and 8080 should be changed to the values you entered
when installing Greenstone 3).

59

A Using Greenstone 3 from CVS

*** need to make sure building stuff is in here ***
Greenstone 3 is also available via CVS. You can download the latest version of

the code. This is not guaranteed to be stable, in fact it is likely to be unstable. The
advantage of using CVS is that you can update the code and get the latest fixes.

Note that you will need the Java 2 SDK, version 1.4.0 or higher.
To check out the Greenstone code, use:

cvs -d :pserver:cvs_anon@cvs.scms.waikato.ac.nz:2402/usr/local/
global-cvs/gsdl-src co gsdl3

If you need it, the password for anonymous CVS access is anonymous. Note
that some older versions of CVS have trouble accessing this repository due to the
port number being present. We are using version 1.11.1p1.

The software needs to be compiled and installed. The installation procedure
has been semi-automated. The following sections describe installation under Linux
and windows.

A.1 Linux install

An install.sh script is provided to compile and install Greenstone 3 . What you
need to do is:

cd gsdl3

source gs3-setup.sh

./gs3-prepare.sh

./gs3-configure.sh

./gs3-compile.sh

./gs3-finalise.sh

Note: source gs3-setup.sh sets the environment variables CLASSPATH, PATH,

JAVA HOME and needs to be done in a shell before doing collection building etc.
To startup or shutdown the library (includes the Tomcat server and MYSQL

server), the commands are:

./gs3-launch.sh ./gs3-launch.sh -shutdown

A.2 Windows install

Make sure that the following environment variables are set: JAVA HOME (where
the JAva 2 SDK is installed); PATH (should include the CVS program, and %JAVA HOME%\bin).
The following commands should be run in a DOS prompt.

Run gs3-setup.bat
Run gs3-prepare.bat
Using Wordpad, edit the gsdl3\comms\jakarta\tomcat\conf\server.xml file. Add

60

<!-- GSDL3 Service -->

<Context path=’/gsdl3’ docBase=’@gsdl3home@\web’ debug=’1’

reloadable=’true’/>

above the line: <!-- Tomcat Root Context -->

Still using Wordpad, edit the gsdl3\comms\jakarta\tomcat\conf\web.xml file.
set the value of the ’listings’ parameter to false.

Run make.bat
Run make.bat install.
Run gs3-finalise.bat

To run Greenstone , run gs3-launch.bat. This will start the Tomcat server in
a new DOS window (stop it by closing the window), and open a broser window
showing the Greenstone 3 homepage.

A.3 Creating a distribution

The installation scripts have been set up in such a way that it is easy to create
different distribution types (for linux). To create a standard binary distribution,
carry out the following steps:

cvs co gsdl3
cd gsdl3
source gs3-setup.sh
./gs3-prepare.sh
./gs3-configure.sh
./gs3-compile.sh
./gs3-for-distribution.sh

mv Header ../
cd ../
tar czvf gsdl3.tgz gsdl3/
cat Header gsdl3.tgz > gsdl3-x.xx-unix.sh

Note that gs3-for-distribution.sh removes some files that are not needed for the
distribution, including all the CVS directories. Once you have run this, you will no
longer be able to update your gsdl3 code via cvs.

To create a source distribution, you can do:
cvs co gsdl3
cd gsdl3
source gs3-setup.sh
./gs3-prepare.sh
<delete unnecessary files>
cd ../
tar czvf gsdl3-x.xx-src.tgz gsdl3/

Some of the gs3-for-distribution script will need to be run (at the stage of delete
unnecessary files), and there needs to be instructions on what to do when someone
downloads the source distro.

I think it would be:

61

tar xzvf gsdl3-x.xx-src.tgz
cd gsdl3
source gs3-setup.sh
./gs3-configure.sh
./gs3-compile.sh
./gs3-finalise.sh

62

B Tomcat

Tomcat is a servlet container. It is used to serve a Greenstone site using a servlet.
The file $GSDL3HOME/comms/jakarta/tomcat/conf/server.xml is the Tom-

cat configuration file. The installation process adds a context for Greenstone 3
servlets ($GSDL3HOME/web)—this tells Tomcat where to find the web.xml file, and
what URL (/gsdl3) to give it. Anything inside the context directory is accessible
via Tomcat12. For example, the index.html file that lives in $GSDL3HOME/web can
be accessed through the URL localhost:8080/gsdl3/index.html. The demo
collection’s images can be accessed through
localhost:8080/gsdl3/sites/localsite/collect/demo/images/.

Tomcat runs by default on port 8080—this can be changed in server.xml, in the
<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 --><Connector>

element. The siteConfig files also need changing if Tomcat’s port is changed:
<httpAddress> for the site, and <address> for a remote site both use this.

Note: Tomcat must be shutdown and restarted any time you make changes in
the following for those changes to take effect:

• $GSDL3HOME/web/WEB-INF/web.xml

• $GSDL3HOME/comms/jakarta/tomcat-tomcat-4.0.1/conf/server.xml

• any classes or jar files used by the servlets

Note: stdin and stdout for the servlets both go to
$GSDL3HOME/comms/jakarta/tomcat/logs/catalina.out

On startup, the servlet loads in its collections and services. If the site or col-
lection configuration files are changed, these changes will not take effect until the
site/collection is reloaded. This can be done through the reconfiguration messages
(see Section 1.6), or by restarting Tomcat.

We have set up Tomcat to follow symlinks. To disable this feature, remove the
<Resources> element from the gsdl3 context in $GSDL3HOME/comms/jakarta/tomcat/conf/server.xml:

<Context path="/gsdl3" docBase="$GSDL3HOME/web" debug="1"

reloadable="true">

<Resources allowLinking=’true’/>

</Context>

We have set up Tomcat to disallow directory listings for everything in the
docBase directory. To turn this back on, you need to edit Tomcat’s default web.xml
file ($GSDL3HOME/comms/jakarta/tomcat/conf/web.xml):

In the default servlet definition, change the ’listings’ parameter to true.
12can we use .htaccess files to restrict access??

63

Tomcat uses a Manager to handle HTTP session information. This may be
stored between restarts if possible. To use a persistent session handling manager,
uncomment the <Manager> element in $GSDL3HOME/comms/jakarta/tomcat/conf/server.xml.
For the default manager, session information is stored in the work directory: $GSDL3HOME/comms/jakarta/tomcat/work/Standalone/localhost/gsdl3/SESSIONS.ser.
Delete this file to clear the cached session info.

B.1 Proxying Tomcat with apache

Instead of incorporating servlet support into your existing web server, an easy alter-
native is to proxy Tomcat. The http://www.greenstone.org/greenstone3 site
uses apache to proxy Tomcat. ProxyPass and ProxyPassReverse directives need to
be added to the Virtualhost description for the www.greenstone.org server.

<VirtualHost xx.xx.xx.xx>

ServerName www.greenstone.org

...

ProxyPass /greenstone3 http://puka.cs.waikato.ac.nz:8080/gsdl3

ProxyPassReverse /greenstone3 http://puka.cs.waikato.ac.nz:8080/gsdl3

</VirtualHost>

In our example, the Greenstone 3 servlet can be accessed at http://www.greenstone.org/greenstone3/library,
instead of at http://puka.cs.waikato.ac.nz:8080/gsdl3/library, which is
not publically accessible.

B.2 Running Tomcat behind a proxy

Almost everything works fine when Tomcat is running behind a proxy. The only
time this causes trouble is if the servlet itself needs to make external http connec-
tions. We do this in the infomine demo collection for example. One of the service
classes sends http requests to the infomine database at riverside. Since this is go-
ing through the proxy, a username and password is needed. It is not sufficient to
prompt the user for a password because they are unlikely to have a password for
the particular proxy that Tomcat is using. What we have done at present is to put
a proxy element in the siteConfig.xml file. Here you have to enter a suitable user-
name and password for the proxy server. Unfortunately these are entered in plain
text. And the file is viewable via the servlet. So we need a better solution.

64

C SOAP

C.1 Setting up SOAP from CVS

If you have obtained Greenstone through CVS, you will need to install the SOAP
stuff by running:

install-soap.bash

This unpacks the soap distribution, adds a SOAP context to Tomcat’s server.xml
configuration file, and creates the file src/java/org/greenstone/gsdl3/SOAPServer.java
from src/java/org/greenstone/gsdl3/SOAPServer.java.in (it has a place where
gsdl3home needs to be added). It also tries to deploy the SOAP service, but this
often doesn’t work. You may need to run from a shell the following command:

java org.apache.soap.server.ServiceManagerClient
http://localhost:8080/soap/servlet/rpcrouter deploy
resources/soap/localsite.xml

You can also deploy a service through the website. If Tomcat is not running,
start it up (see ??).

The SOAP servlet can be accessed at http://localhost:8080/soap. You
should see a welcome page. Click on “Run the admin client”. This enables you to
list, deploy and undeploy SOAP services.

To deploy the SOAPServer for localsite:
Click on “deploy” and edit the following fields in the deploy form:

ID: org.greenstone.localsite
Scope: (choose Session Request—new instantiation for each request
or Application) Session—same instantiation across a session

Application—only uses one instantiation
Methods: process
Java Provider / Provider Class: org.greenstone.gsdl3.SOAPServer

Now click the “deploy” button at the bottom of the page. If the service has
been deployed, it should appear when you click on the left hand “List” button.

Information about deployed services is maintained between Tomcat sessions—
you only need to deploy it once. To get the library1 servlet talking to the SOAP
server, you need to shutdown and restart Tomcat (see ??). You should see more
collections when you run the library1 servlet.

C.2 Debugging SOAP

If you need to debug the SOAP stuff for some reason, or just want to look at
the SOAP messages that are being passed back and forth, use a program called
TcpTunnelGui. This intercepts messages coming in to one port, displays them,
and passes them to another port. To run it, type:

65

java org.apache.soap.util.net.TcpTunnelGui 8070 localhost

8080

8070 is the port that TcpTunnelGui listens on, and 8080 is the port that it sends
the messages onto—the port that Tomcat is using. You need to modify Green-
stone to talk to port 8070 when it wants to talk to Tomcat, so that the messages go
through TcpTunnelGui. This is specified in the <site> element of the soapsite site
configuration file ($GSDL3HOME/web/sites/soapsite/siteConfig.xml).

<site name="org.greenstone.localsite"
address="http://localhost:8080/soap/servlet/rpcrouter"
type="soap"/>

Note that http://localhost:8080/soap/servlet/rpcrouter is the address
for talking to the Tomcat SOAP servlet services.

66

D Format statements: Greenstone 2 vs Greenstone 3

The following table shows the Greenstone 2 format elements, and their equivalents
in Greenstone 3

Table 11: Greenstone 3 equivalents of Greenstone 2 format statements
Greenstone 2 Greenstone 3
[Text] <gsf:text/>
[num] <gsf:metadata name=’docnum’/>
[link][/link] <gsf:link></gsf:link> or

<gsf:link type=’document’></gsf:link>
[srclink][/srclink] <gsf:link type=’source’></gsf:link>
[icon] <gsf:icon/> or

<gsf:icon type=’document’/>
[srcicon] <gsf:icon type=’source’/>
[Title] (metadata) <gsf:metadata name=’Title’/> or

<gsf:metadata name=’Title’ select=’current’/>
[parent:Title] <gsf:metadata name=’Title’ select=’parent’ />
[parent(All):Title] <gsf:metadata name=’Title’ select=’ancestors’/>
[parent(Top):Title] <gsf:metadata name=’Title’ select=’root’ />
[parent(All’: ’):Title] <gsf:metadata name=’Title’ select=’ancestors’

separator=’: ’ />
[sibling(All’: ’):Title] <gsf:metadata name=’Title’ multiple=’true’

separator=’: ’ />
{Or}{[dc.Title], <gsf:choose-metadata>
[dls.Title], [Title]} <gsf:metadata name=’dc.Title’/>

<gsf:metadata name=’dls.Title’/>
<gsf:metadata name=’Title’/>

</gsf:choose-metadata>
{If}{[parent:Title], <gsf:choose-metadata>
[parent:Title], [Title]} <gsf:metadata name=’Title’ select=’parent’/>

<gsf:metadata name=’Title’/>
</gsf:choose-metadata>

{If}{[Subject], <gsf:switch>
<td>[Subject]</td>} <gsf:metadata name=’Subject’/>

<gsf:when test=’exists’>
<td><gsf:metadata name=’Subject’/></td>
</gsf:when></gsf:switch>

67

