
Greenstone: A Comprehensive Open-Source
Digital Library Software System

Ian H. Witten,* Rodger J. McNab,† Stefan J. Boddie,* David Bainbridge*

* Dept of Computer Science

University of Waikato, New Zealand

E-mail: {ihw, sjboddie, davidb}@cs.waikato.ac.nz

† Digilib Systems

Hamilton, New Zealand

E-mail: rodger@digilibs.com

ABSTRACT

This paper describes the Greenstone digital library
software, a comprehensive, open-source system for the
construction and presentation of information collections.
Collections built with Greenstone offer effective full-text
searching and metadata-based browsing facilities that are
attractive and easy to use. Moreover, they are easily
maintainable and can be augmented and rebuilt entirely
automatically. The system is extensible: software
“plugins” accommodate different document and metadata
types.

INTRODUCTION

Notwithstanding intense research activity in the digital
library field during the second half of the 1990s,
comprehensive software systems for creating digital
libraries are not widely available. In fact, the usual solution
when creating a digital library is also the most
obvious—just put it on the Web. But consider how much
effort is involved in constructing a Web site for a digital
library. To be effective it needs to be visually attractive
and ergonomically easy to use, incorporate convenient and
powerful searching capabilities, and offer rich and natural
browsing facilities. Above all it must be easy to maintain
and augment, which presents a significant challenge if any
manual organization is involved.

The alternative is to automate these activities through
software tools. But the broad scope of digital library
requirements makes this a daunting prospect. Ideally the
software should incorporate facilities ranging from

multilingual information retrieval to distributed computing
protocols, from interoperability to search engine
technology, from metadata standards to multiformat
document parsing, from multimedia to multiple operating
systems, from Web browsers to plug-and-play DVDs.

The Greenstone Digital Library Software from the New
Zealand Digital Library (NZDL) project tackles this issue
by providing a new way of organizing information and
making it available over the Internet. A collection of
information comprises several (typically several thousand,
or several million) documents, and a uniform interface is
provided to all documents in a collection. A library may
include many different collections, each organized
differently—though there is a strong family resemblance in
how collections are presented.

Making information available using this system is far more
than “just putting it on the Web.” The collection becomes
maintainable, searchable, and browsable. Each collection,
prior to presentation, undergoes a “building” process that,
once established, is completely automatic. This process
creates all the structures that are used at run-time for
accessing the collection. Searching is based on various
indexes, while browsing is based on various metadata;
support structures for both are created during the building
operation. When new material appears it can be fully
incorporated into the collection by rebuilding.

To address the exceptionally broad demands of digital
libraries, the system is public and extensible. It is issued
under the Gnu public license and, in the spirit of open-
source software, users are invited to contribute
modifications and enhancements. Only through an
international cooperative effort will digital library software
become sufficiently comprehensive to meet the world’s
needs. Currently the Greenstone software is used at sites in
Canada, Germany, New Zealand, Romania, UK, and the
US, and collections range from newspaper articles to
technical documents, from educational journals to oral
history, from visual art to folksongs. The software has
been used for collections in many different languages, and
for CD-ROMs that have been published by the United
Nations and other humanitarian agencies in Belgium,
France, Japan, and the US for distribution in developing
countries (Humanity Libraries, 1998; PAHO, 1999;
UNESCO, 1999; UNU, 1998). Further details can be
obtained from www.nzdl.org.

This paper sets the scene with a brief discussion of what a
digital library is. We then give an overview of the facilities
offered by Greenstone and show how end users find
information in collections. Next we describe the files and
directories involved in a collection, and then discuss the
processes of updating existing collections and creating new
ones, including extending the software to provide new
facilities. We conclude with an overview of related work.

WHAT IS A DIGITAL LIBRARY?

 Ten definitions of the term “digital library” have been
culled from the literature by Fox (1998), and their spirit is
captured in the following brief characterization:

 A collection of digital objects, including text,
video, and audio, along with methods for access
and retrieval, and for selection, organization
and maintenance of the collection

 (Akscyn and Witten, 1998). Lesk (1998) views digital
libraries as “organized collections of digital information,”
and wisely recommends that they articulate the principles
governing what is included and how the collection is
organized.

 Digital libraries are generally distinguished from the
World-Wide Web, the essential difference being in
selection and organization. But they are not generally
distinguished from a web site: indeed, virtually all extant
digital libraries manifest themselves as a web site. Hence
the obvious question: to make a digital library, why not
just put the information on the Web?

 But we make a distinction between a digital library and a
web site that lies at the heart of our software design: one
should easily be able to add new material to a library
without having to integrate it manually or edit its content
in any way. Once added, new material should immediately

become a first-class component of the library. And what
permits it to be integrated into existing searching and
browsing structures without any manual intervention is
metadata. This provides sufficient focus to the concept of
“digital library” to support the development of a
construction kit.

OVERVIEW OF GREENSTONE

 Information collections built by Greenstone combine
extensive full-text search facilities with browsing indexes
based on different metadata types. There are several ways
for users to find information, although they differ between
collections depending on the metadata available and the
collection design. Typically you can search for particular
words that appear in the text, or within a section of a
document, or within a title or section heading. You can
browse documents by title: just click on the displayed book
icon to read it. You can browse documents by subject.
Subjects are represented by bookshelves: just click on a
shelf to see the books. Where appropriate, documents
come complete with a table of contents (constructed
automatically): you can click on a chapter or subsection to
open it, expand the full table of contents, or expand the full
document.

 An example of searching is shown in Figure 1 where
documents in the Global Help Project’s Humanity
Development Library (HDL) are being searched for
chapters matching the word butterfly. In Figure 2 the same
collection is being browsed by subject: by clicking on the
bookshelf icons the user has discovered an item under
Section 16, Animal Husbandry. Pursuing an interest in
butterfly farming, the user selects a book by clicking on its
book icon. In Figure 3 the front cover of the book is
displayed as a graphic on the left, and the automatically
constructed table of contents appears at the start of the
document. The current focus, Introduction and Summary,
is shown in bold in the table of contents with its text
starting further down the page.

 In accordance with Lesk’s advice, a statement of purpose
and coverage accompanies each collection, along with an
explanation of how it is organized (Figure 1 shows the
start of this). A distinction is made between searching and
browsing. Searching is full-text, and—depending on the
collection’s design—the user can choose between indexes
built from different parts of the documents, or from
different metadata. Some collections have an index of full
documents, an index of sections, an index of paragraphs,
an index of titles, and an index of section headings, each of
which can be searched for particular words or phrases.
Browsing involves data structures created from metadata
that the user can examine: lists of authors, lists of titles,
lists of dates, hierarchical classification structures, and so
on. Data structures for both browsing and searching are
built according to instructions in a configuration file,
which controls both building and serving the collection.
Sample configuration files are discussed below.

Figure 1: Searching the HDL collection

 Rich browsing facilities can be provided by manually
linking parts of documents together and building explicit
indexes and tables of contents. However, manually-created
linking becomes difficult to maintain, and often falls into
disrepair when a collection expands. The Greenstone
software takes a different tack: it facilitates maintainability
by creating all searching and browsing structures
automatically from the documents themselves. No links
are inserted by hand. This means that when new
documents in the same format become available, they can
be added automatically. Indeed, for some collections this is
done by processes that wake up regularly, scout for new
material, and rebuild the indexes—all without manual
intervention.

Collections comprise many documents: thousands, tens of
thousands, or even millions. Each document may be
hierarchically organized into sections (subsections, sub-
subsections, and so on). Each section comprises one or
more paragraphs. Metadata such as author, title, date,
keywords, and so on, may be associated with documents,
or with individual sections of documents. This is the raw
material for indexes. It must either be provided explicitly
for each document and section (for example, in an
accompanying spreadsheet) or be derivable automatically
from the source documents. Metadata is converted to
Dublin Core and stored with the document for internal use.

 In order to accommodate different kinds of source
documents, the software is organized so that “plugins” can
be written for new document types. Plugins exist for plain
text documents, HTML documents, email documents, and
bibliographic formats. Word documents are handled by
saving them as HTML; PostScript ones by applying a
preprocessor (Nevill-Manning et al., 1998). Specially
written plugins also exist for proprietary formats such as
that used by the BBC archives department. A collection
may have source documents in different forms: it is just a

matter of specifying all the necessary plugins. In order to
build browsing indexes from metadata, an analogous
scheme of “classifiers” is used: classifiers create indexes
of various kinds based on metadata. Source documents are
brought into the Greenstone system through a process
called importing, which uses the plugins and classifiers
specified in the collection configuration file.

 The international Unicode character set is used throughout,
so documents—and interfaces—can be written in any
language. Collections have so far been produced in
English, French, Spanish, German, Maori, Chinese, and
Arabic. The NZDL Web site provides numerous examples.
Collections can contain text, pictures, and even audio and
video clips; a text-only version of the interface is also
provided to accommodate visually impaired users.
Compression technology is used to ensure best use of
storage (Witten et al ., 1999). Most non-textual material is
either linked to textual documents or accompanied by
textual descriptions (such as photo captions) to allow full-
text searching and browsing. However, the architecture
permits the implementation of plugins and classifiers even
for non-textual data.

 The system includes an “administrative” function whereby
specified users can examine the composition of all
collections, protect documents so that they can only be
accessed by registered users on presentation of a password,
and so on. Logs of user activity are kept that record all
queries made to every Greenstone collection (though this
facility can be disabled).

 Although primarily designed for Internet access over the
World-Wide Web, collections can be made available, in
precisely the same form, on CD-ROM. In either case they
are accessed through any Web browser. Greenstone CD-
ROMs operate on a standalone PC under Windows 3.X,
95, 98, and NT, and the interaction is identical to accessing
the collection on the Web—except that response is faster
and more predictable. The requirement to operate on early
Windows systems is one that plagues the software design,
but is crucial for many users—particularly those in
underdeveloped countries seeking access to humanitarian
aid collections. If the PC is connected to a network
(intranet or Internet), a custom-built Web server provided
on each CD makes exactly the same information available
to others through their standard Web browser. The use of
compression ensures that the greatest possible volume of
information can be packed on to a CD-ROM.

 The collection-serving software operates under Unix and
Windows NT, and works with standard Web servers. A
flexible process structure allows different collections to be
served by different computers, yet be presented to the user
in the same way, on the same Web page, as part of the
same digital library, even as part of the same collection
(McNab and Witten, 1998). Existing collections can be
updated and new ones brought on-line at any time, without
bringing the system down; the process responsible for the
user interface will notice (through periodic polling) when
new collections appear and add them to the list presented
to the user.

Figure 2: Browsing the HDL collection by subject

FINDING INFORMATION

 Greenstone digital library systems generally include
several separate collections. A home page allows you to
select a collection; in addition, each collection has its own
“about” page that gives you information about how the
collection is organized and the principles governing what
is included.

 All icons in the screenshots of Figures 1–4 are clickable.
Those icons at the top of the page return to the home page,
provide help text, and allow you to set user interface and
searching preferences. The navigation bar underneath
gives access to the searching and browsing facilities,
which differ from one collection to another.

 Each of the five buttons provides a different way to find
information. You can search for particular words that
appear in the text from the “search” page (or from the
“about” page of Figure 1). This collection contains indexes
of chapters, section titles, and entire books. The default
search interface is a simple one, suitable for casual users;
advanced searching—which allows full Boolean
expressions, phrase searching, case and stemming
control—can be enabled from the Preferences page.

 This collection has four browsable metadata indexes. You
can access publications by subject by clicking the subjects
button, which brings up a list of subjects, represented by
bookshelves (Figure 2). You can access publications by
title by clicking titles a-z (Figure 4), which brings up a list
of books in alphabetic order. You can access publications
by organization (i.e. Dublin Core “publisher”), bringing up
a list of organizations. You can access publications by
“how to” listing, yielding a list of hints defined by the
collection’s editors. We use the Dublin Core as a base and
extend it in an ad hoc manner to accommodate the
individual requirements of collection designers.

FILES IN A COLLECTION

 When a new collection is created or material is added to an
existing one, the original source documents are first
brought into the system through a process known as
“importing.” This involves converting documents into a
simple HTML-like format known as GML (for
“Greenstone Markup Language”), which includes any
metadata associated with the document. Documents are
assumed to be in the Unicode UTF-8 code (of which the
ASCII characters form a subset).

 Files and directories

 There is a separate directory for each collection, which
contains five subdirectories: the original raw material
(import), the GML files created from this (archives), the
final collection as it is served to users (index), a directory
for use during the building process (building), and one for
any supporting files (etc)—including the configuration file
that controls the collection creation procedure. Additional
files might be required: for example, building a hierarchy
of classifications requires a data file of sub-classifications.

 The imported documents

 In order to identify documents internally, a unique object
identifier or OID is assigned to each original source
document when it is imported (formed by hashing the
content, to overcome file duplication effects caused by
mirroring) and stored as metadata within that document. It
is important that OIDs persist throughout the index-
building process—so that a user’s search history is
unaffected by rebuilding the collection. OIDs are assigned
by hashing the contents of the original source document.

 Once imported, each document is stored in its own
subdirectory of archives, along with any associated
files—for example, images. To ensure compatibility with
Windows 3.0, only eight characters are used in directory
and file names, which causes annoying but essentially
trivial complications.

 Inside the documents

 The GML format imposes a limited amount of structure on
documents. Documents are divided into paragraphs. They
can be split hierarchically into sections and subsections.
OIDs are extended to identify these components by
appending numbers, separated by periods, to a document’s
OID. When a book is read, its section hierarchy is visible
as the table of contents (Figure 3). Chapters, sections,
subsections, and pages are all implemented simply as
“sections” within the document. In some collections
documents do not have a hierarchical subsection structure,
but are split into pages to permit browsing within a
retrieved document.

 The document structure is used for searchable indexes.
There are three levels of index: documents, sections, and

Figure 3: Reading a book in the HDL

paragraphs, corresponding to the distinctions that GML
makes—the hierarchical structure is flattened for the
purposes of creating these indexes. Indexes can be of text,
or metadata, or any combination. Thus you can create a
searchable index of section titles, and/or authors, and/or
document descriptions, as well as the document text.

UPDATING EXISTING COLLECTIONS

 Updating an existing collection with new files in the same
format is easy. For example, the raw material for the HDL
is supplied in the form of HTML files marked up with
<<TOC>> tags to split books into sections and
subsections, and <<I>> tags to indicate where an image is
to be inserted. For each book in the library there is a
directory that contains a single HTML file representing the
book, and separate files containing the associated images.
An accompanying spreadsheet file contains the
classification hierarchy; this is converted to a simple file
format (using Excel’s Save As command).

 Since the collection exists, its directory is already set up
with subdirectories import, archives, building, index, and
etc, and the etc directory will contain a suitable collection
configuration file.

 The updating procedure

 To update a collection, the new raw material is placed in
the import directory, in whatever form it is available. Then

the import process is invoked, which converts the files into
GML using the specified plugins. Old material for which
GML files have previously been created is not re-imported.
Then the build process is invoked to build the requisite
indexes for the collection. Finally, the contents of the
building directory are moved into the index directory, and
the new version of the collection automatically becomes
live.

 This procedure may seem cumbersome. But all the steps
are necessary for efficient operation with large collections.
The import process could be performed on the fly during
the building operation—but because building indexes is a
multipass operation, the often lengthy importing would be
repeated several times. The build process can take
considerable time—a day or two, for very large
collections. Consequently, the results are placed in the
building directory so that, if the collection already exists, it
will continue to be served to users in its old form
throughout the building operation.

 Active users of the collection will not be disturbed when
the new version becomes live—they will probably not
even notice. The persistent OIDs ensure that interactions
remain coherent—users who are examining the results of a
query or browse operation will still retrieve the expected
documents—and if a search is actually in progress when
the change takes place the program detects the resulting
file-structure inconsistency and automatically and
transparently re-executes the query, this time on the new
version of the collection.

 How it works

 The original material in the import directory may be in any
format, and plugins are required to process each format
type. The plugins that a collection uses must be specified
in the collection configuration file. The import program
reads the list of plugins and passes each document to each
plugin in order until it finds one that can process it. When
updating an existing collection, all plugins necessary to
process new material should already have been specified in
the configuration file.

 The building step creates the indexes for both searching
and browsing. The MG software is generally used to do the
searching (Witten et al., 1999), and the mgbuild module is
automatically invoked to create each of the indexes that is
required. For example, the Humanity Development Library
has three indexes, one for entire books, one for chapters,
and one for section titles. Subdirectories of the index
directory are created for each of these indexes.

Figure 4: Browsing titles in the HDL

 MG also compresses the text of the collection; and the
image files are linked into the index subdirectory. Now
none of the material in the import and archives directories
is needed to run the collection and can be removed from
the file system (though they would be needed if the
collection were rebuilt).

 Associated with each collection is a database stored in
GDBM (Gnu database manager) format. This contains an
entry for each document, giving its OID, its internal MG
document number, and metadata such as title. Information
for each of the browsing indexes, which appear as buttons
on the Greenstone search/browse bar, is also extracted
during the building process and stored in the database. A
“classifier” program is required for each browsing index to
extract the appropriate information from GML documents.
Like plugins, classifiers are written on an ad hoc basis for
the particular information required, and where possible
reused from one collection to another.

 The building program creates the indexes based on
whatever appears in the archives directory. The first plugin
specified by all collections is one that processes GML
files, and so if archives contains imported files they will be
processed correctly. If it contains material in the original
format, that will be converted using the appropriate plugin.
Thus the import process is optional.

 GML is designed to be fast and easy to parse, an important
requirement when millions of documents are to be
processed. Something as simple as requiring tags to be
lower-case, for example, yields a substantial speed-up. In

certain circumstances, however, it might be preferable to
use a standardized format such as XML. This is
straightforward to implementjust write an XML
pluginalthough we have not done so ourselves. Given
the transitory nature of the imported data, to date, we have
found GML a satisfactory and beneficial format.

CREATING NEW COLLECTIONS

 Building new collections from scratch is only slightly
different from updating an existing collection. The key
new requirement is creating a collection configuration file,
and a software utility is provided to help. Two pieces of
information are required for this: the name of the directory
that the collection will use (into which the source data and
other files will eventually be placed), and a contact e-mail
address for use if any problems are encountered by the
software once the collection is up and running. The utility
creates files and directories within the newly-named
directory to support a generic collection of plain text
documents. With suitable data placed in the import
directory, building the collection at this point will yield a
document-level searchable index of all the text and a
browsable list of “titles” (defined in this case to be the
document filenames).

 To enhance the functionality and presentation— something
anything but the most trivial collection will require—the
configuration file must be edited. For a collection sourced
from documents in an already supported data format,
presented in a similar fashion to an existing collection, the

creator davidb@cs.waikato.ac.nz 1
maintainer davidb@cs.waikato.ac.nz 2
public True 3

4
indexes document:text 5
defaultindex document:text 6
plugins GMLPlug TEXTPlug ArcPlug RecPlug 7

8
classify AZList metadata=Title 9

10
collectionmeta collectionname "generic text collection" 11

(a) collectionmeta .document:text "documents" 12

creator davidb@cs.waikato.ac.nz 1
maintainer davidb@cs.waikato.ac.nz 2
public True 3

4
indexes document:text document:From 5
defaultindex document:text 6
plugins GMLPlug EMAILPlug ArcPlug RecPlug 7

8
classify AZList metadata=Title 9
classify DateList 10

11
collectionmeta collectionname "Email messages" 12
collectionmeta .document:text "documents" 13
collectionmeta .document:From "email senders" 14

15
format QueryResults \ 16

(b) <td>[link][icon][/link]</td><td>[Title]</td><td>[Author]</td> 17

Figure 5: Collection configuration files (a) generic, (b) for an email collection

amount of editing is minimal. Importing new data formats
and browsing metadata in ways not currently supported are
more complex activities that require programming skills.

 Modifying the configuration file

 Figure 5b shows simple alterations to the generic
configuration file in Figure 5a that was generated by the
new-collection utility. TEXTPlug is replaced with
EMAILPlug (line 7) which reads email files and extracts
metadata (From, To, Date, Subject) from them. A classifier
for dates is added (line 10) to make the collection
browsable chronologically. The default presentation of
search results is overridden (line 17) to display both the
title of the message (i.e. Dublin Core Title) and its sender
(i.e. Dublin Core Author). Elements in square brackets,
such as [Title], are replaced by the metadata associated
with a particular document. The built-in term [icon]
produces a suitable image that represents the document
(such as a book icon or page icon), and the [link]…[/link]
construct forms a hyperlink to the complete document.
Anything else in the format statement, which in this case is
solely table-cell tags in HTML, is passed through to the
page being displayed.

As this example shows, creating a new collection that stays
within the bounds of the library’s established capabilities
falls within the capability of many computer users—for
instance, computer-trained librarians. Extending
Greenstone to handle new document formats and browse
metadata in new ways is more challenging.

 Writing new plugins and classifiers

 Extensibility is obtained through plugins and classifiers.

 These are modules of code that can be slotted into the
system to enhance its capabilities. Plugins parse
documents, extracting the text and metadata to be indexed.
Classifiers control how metadata is brought together to
form browsable data structures. Both are specified in an
object-oriented framework using inheritance to minimize
the amount of code written.

 A plugin must specify three things: what file formats it can
handle, how they should be parsed, and whether the plugin
is recursive. File formats are normally determined using
regular expression matching on the filename. For example,
the HTML plugin accepts all files that end in .htm, .html,
.HTM, or .HTML. (It is quite possible, however, to write
plugins that “look inside” the file as well.) For other files,
the plugin returns undefined and the file is passed to the
next plugin in the collection’s configuration file (e.g.
Figure 5 line 7). If it can, the plugin parses the file and
returns the number of documents processed. This involves
extracting text and metadata and adding it to the library’s
content through calls to add text and add metadata.

 Some plugins (“recursive” ones) add extra files into the
stream of data processed during the building phase by
artificially reactivating the list of plugins. This is how
directory hierarchies are traversed.

 Plugins are small modules of code that are easy to write.
We monitored the time it took to develop a new one that
was different to any we had produced so far. We chose to
make as an example a collection of HTML bookmark files,
the motivation being to produce a convenient way of
searching and browsing one’s bookmarked Web pages.
Figure 6 shows a user searching for bookmarked pages
about music. The new plugin took under an hour to write,
and was 160 lines long (ignoring blank lines and
comments)—about the average length of existing plugins.

 Classifiers are more general than plugins because they
work on GML-format data. For example, any plugin that
generates date metadata in accordance with the Dublin
core can request the collection to be browsable
chronologically by specifying the DateList classifier in the
collection’s configuration file (Figure 7). Classifiers are
more elaborate than most plugins, but new ones are seldom
required. The average length of existing classifiers is 230
lines.

 Classifiers must specify three things: an initialization
routine, how individual documents are classified, and the
final browsable data structure. Initialization takes care of
any options specified in the configuration file (such as
metadata=Title on line 9 of Figure 5b). Classifying
individual documents is an iterative process: for each one,
a call to document-classify is made. On presentation of the
document’s OID, the necessary metadata is located and
used to control where the document is added to the
browsable data structure being constructed.

 Once all documents have been added, a request is made for
the completed data structure. Some classifiers return the
data structure directly; others transform the data structure
before it is returned. For example, the AZList classifier

Figure 6: Searching bookmarked Web pages

divides the alphabetically sorted list of metadata into
separate pages of about the same size and returns the
alphabetic ranges for each one (Figure 4).

OVERVIEW OF RELATED WORK

Two projects that provide substantial open source digital
library software are Dienst (Lagoze and Fielding, 1998)
and Harvest (Bowman et al., 1994). The origins of Dienst
(www.cs.cornell.edu/cdlrg) stretch back to 1992. The term
has come to represent three entities: a conceptual
architecture for distributed digital libraries; an open
protocol for service communication; and a software
system that implements the protocol. To date, five sample
digital libraries have been built using this technology.
They manifest themselves in two forms: technical reports
and primary source documents.

Best known is NCSTRL, the Networked Computer
Science Technical Reference Library project
(www.ncstrl.org). This collection facilitates searching by
title, author and abstract, and browsing by year and author,
across a distributed network of document repositories.
Documents can (where supported) be delivered in various
formats such as PostScript, a thumbnail overview of the
pages, and a GIF image of a particular page.

The Making of America resource is an example of a
collection based around primary sourcesin this case
American social history, 1830−1900. It has a different
“look and feel” to NCSTRL, being strongly oriented
toward browsing rather than searching. A user navigates
their way through a hierarchical structure of hyperlinks to
reach a book of interest. The book itself is a series of
scanned images: delivery options include going directly to

a page number, next and previous page buttons, and
displaying a particular page at different resolutions. A text
version of the page is also available upon which a
searching option is also provided.

Started in 1994, Harvest is also a long-running research
project. It provides an efficient means of gathering source
data from the Internet and distributing indexing
information over the Internet. This is accomplished
through five components: gatherer, broker, indexer,
replicator and cache. The first three are central to creating,
updating and searching a collection; the last two help to
improve performance over the Internet through transparent
mirroring and caching techniques.

The system is configurable and customizable. While
searching is most commonly implemented using Glimpse
(glimpse.cs.arizona.edu), in principle any search engine
that supports incremental updates and Boolean
combinations of attribute-based queries can be used. It is
possible to control what type of documents are gathered
during creation and updating, and how the query interface
looks and is laid out.

Sample collections cited by the developers include 21,000
computer science technical reports and 7,000 home pages.
Other examples include a sizable collection of agriculture-
related electronic journals and magazines called “tomato-
juice” (accessed through hegel.lib.ncsu.edu) and a full-text
index of library-related electronic serials
(sunsite.berkeley.edu/IndexMorganagus). Harvest is also
often used to index Web sites (for example
www.middlebury.edu).

Comparing Greenstone with Dienst and Harvest, there are
both similarities and differences. All provide substantial
digital library systems, hence common themes recur, but
they are driven by projects with different aims. Harvest,
for instance, was not conceived as a digital library project
at all, but by virtue of its selective document gathering
process it can be classed (and is used) as one. While it
provides sophisticated search options, it lacks the
complementary service of browsing. Furthermore it adds
no structure or order to the documents collected, relying
on whatever structures are present in the site that they
were gathered from. A proven strength of the design is its
flexibility through configuration and customizationan
element also present in Greenstone.

Dienstbest exemplified through the NCSTRL
worksupports searching and browsing, like Greenstone.
Both use open protocols. Differences include a high
reliance in Dienst on user-supplied information when a
document is added, and a smaller range of document types
supported—although Dienst does include a document
model that should, over time, allow this to expand with
relative ease.

There are also commercial systems that provide similar
digital library services to those described. However, since

Figure 7: Browsing a newspaper collection by date

corporate culture instills proprietary attitudes there is little
opportunity for advancement through a shared
collaborative effort. Consequently they are not reviewed
here.

CONCLUSIONS

Greenstone is a comprehensive software system for
creating digital library collections. It builds data structures
for searching and browsing from the material provided,
rather than relying on any hand-crafting. The process is
controlled by a configuration file, and once a collection
exists new material can be added completely
automatically. Browsing is based on Dublin Core
metadata.

New collections can be developed easily, particularly if
they resemble existing ones. Extensibility is achieved
through software “plugins” that can be written to
accommodate documents, and metadata, in different
formats. Standard plugins exist for many document types;
new ones are easily written. Browsing is controlled by
“classifiers” that process metadata into browsing structures
(by date, alphabetical, hierarchical, etc).

However, the most powerful support for extensibility is
achieved not by technical means but by making the source
code freely available under the Gnu public license. Only
through an international cooperative effort will digital
library software become sufficiently comprehensive to
meet the world’s needs with the richness and flexibility
that users deserve.

ACKNOWLEDGMENTS

We gratefully acknowledge all those who have worked on
the Greenstone software, and all members of the New
Zealand Digital Library project for their enthusiasm and
ideas.

REFERENCES

1. Akscyn, R.M. and Witten, I.H. (1998) “Report on First
Summit on International Cooperation on Digital
Libraries.” ks.com/idla-wp-oct98.

2. Bowman, C.M., Danzig, P.B., Manber, U., and
Schwartz, M.F. “Scalable Internet resource discovery:
Research problems and approaches” Communications
of the ACM, Vol. 37, No. 8, pp. 98−107, 1994.

3. Fox, E. (1998) “Digital library definitions.”
ei.cs.vt.edu/~fox/dlib/def.html.

4. Humanity Libraries (1998) Humanity Development
Library. CD-ROM produced by the Global Help
Project, Antwerp, Belgium.

5. Lagoze, C. and Fielding, D “Defining Collections in
Distributed Digital Libraries” D-Lib Magazine, Nov.
1998.

6. PAHO (1999) Virtual Disaster Library. CD-ROM
produced by the Pan-American Health Organization,
Washington DC, USA.

7. McNab, R.J., Witten, I.H. and Boddie, S.J. (1998) “A
distributed digital library architecture incorporating
different index styles.” Proc IEEE Advances in Digital
Libraries, Santa Barbara, CA, pp. 36–45.

8. Nevill-Manning, C.G., Reed, T., and Witten, I.H.
(1998) “Extracting text from PostScript”
Software—Practice and Experience, Vol. 28, No. 5, pp.
481–491; April.

9. UNESCO (1999) SAHEL point DOC: Anthologie du
développement au Sahel. CD-ROM produced by
UNESCO, Paris, France.

10. UNU (1998) Collection on critical global issues. CD-
ROM produced by the United Nations University
Press, Tokyo, Japan.

11. Witten, I.H., Moffat, A. and Bell, T. (1999) Managing
Gigabytes: compressing and indexing documents and
images, Morgan Kaufmann, second edition.

