Greenstone3 : A modular digital library.

Katherine Don

Department of Computer Science
University of Waikato
Hamilton, New Zealand

Greenstone Digital Library Version 3 is a complete redesigd reimplementation
of the Greenstone digital library software. The currentsi@an (Greenstone2) en-
joys considerable success and is being widely used. Gare®ivill capitalize on

this success, and in addition it will

e improve flexibility, modularity, and extensibility

e lower the bar for “getting into” the Greenstone code with ewito under-
standing and extending it

e use XML where possible internally to improve the amount ¢ffdecumentation

e make full use of existing XML-related standards and sofewar

e provide improved internationalization, particularly grins of sort order, in-
formation browsing, etc.

¢ include new features that facilitate additional “contersmagement” opera-
tions

e operate on a scale ranging from personal desktop to cogpbbaary

e easily permit the incorporation of text mining operations

e use Java, to encourage multilinguality, X-compatibilapd to permit easier
inclusion of existing Java code (such as for text mining).

Parts of Greenstone will remain in other languages (e.g. MGPP); NI (Java
Native Interface) will be used to communicate with these.

A description of the general design and architecture of Ggeme3 is cov-
ered by the documerithe design of Greenstone3: An agent based dynamic digital
library (design-2002.ps, in the docs/manual directory).

This documentation consists of several parts. Section @riadministrators,
and covers Greenstone3 installation, how to access thaiand some adminis-
tration issues. Section 2 is for users of the software, aokid@at using the sample
collections, creating new collections, and how to make boustomizations to the
interface. The remaining sections are aimed towards therGtene developer.
Section 3 describes the run-time system, including thecttre of the software,
and the message format. Section 4 describes how to add nawefedo Green-
stone, such as how to add new services, new page types, ngingfar different
document formats. Section 5 describes how to make Greenatarin a distributed

fashion, using SOAP as an example communications protdioklly, there are
several appendices, including how to install Greenstoom fCVS, some notes
on Tomcat and SOAP, and a comparison of Greenstone2 and<tweeB format
statements.

Contents

1 Greenstone installation and administration 5
1.1 Getandinstall Greenstone 5
1.2 Howthelibraryworks 5
1.2.1 Restartingthelibrary 6
1.3 Directory structure 6
1.4 Sitesandinterfaces, 6
15 ConfiguringTomcat 8
1.6 Configuring a Greenstone library 8
1.6.1 Site configurationfile. 9
1.6.2 Interface configurationfile 11
1.7 Run-time re-initialization 11
2 Using Greenstone3 14
2.1 Usingacollection 14
2.2 Buildingacollection, 15
2.2.1 Using the Librarian Interface 15
2.2.2 Importing from Greenstone2 16
2.2.3 Using command line building 16
2.3 Collection configurationfiles 18
2.3.1 collectionlnitxml oL, 18
2.3.2 collectionConfig.xml 20
2.3.3 buildConfigxml 22
2.4 Formatting the collection 22
2.4.1 Changing the service textstrings 27
2.5 Customizing theinterface 29
2.5.1 Modifying an existing interface 29
2.5.2 Defininganewinterface 30
2.5.3 Changing the interface language 30
3 Developing Greenstone3: Run-time system 32
3.1 Overviewofmodules?? 32
3.2 Startupconfiguration 33
3.3 Message passingo i e e 35
3.4 ’describe’-type messages oL 35
3.5 ’system’-typemessageso e 41
3.6 ’format-typemessages 42
3.7 ’status’-typemessages 42
3.8 ’'process-typemessages e e 44
3.8.1 ’guery-typeservices 45
3.8.2 ’browse’-typeservices 46
3.8.3 retrieve’-type services 47
3.8.4 ’process’-typeservices 49

3.8.5 ‘’applet-typeservices., 50
3.8.6 ’enrich-typeservices., 51
3.9 Pagegeneration00 51
3.9.1 ‘’page’-type requests and their arguments 2 5
3.9.2 pageformat., 53
3.9.3 Receptionists o oo 54
3.9.4 Collection specific formatting 55
395 CGlarguments 55
396 Pageaction 55
3.9.7 Queryaction e 56
3.9.8 Appletaction oL 56
3.99 Documentaction 57
3.9.10 XML Documentaction 57
3.9.11 GS2Browseaction 57
3.9.12 Systemaction 57
3.10 Othercodeinformation 58
Developing Greenstone3 : Adding new features 59
4.1 Creatingandusingnewservices 59
4.1.1 Creatingtheservice. 60
4.1.2 Loadingtheservice. 60
4.1.3 Usingtheservice, 60
4.2 creating new actions/pages e 61
43 newinterfaces 61
4.4 Newtypesofcollections 61
45 Thegs2Interface 64
Distributed Greenstone 65
5.1 Servingasiteusingsoap 65
5.2 Connectingto asitewebservice 66
Using Greenstone3 from CVS 67
Tomcat 68
B.1 Proxying Tomcatwithapache 69
B.2 Running Tomcatbehindaproxy 69
SOAP 70
C.1 Debugging SOAP 70
Tidying up the formatting for imported Greenstone?2 colledions 71
D.1 Format statements: Greenstone2 vs Greenstone3 T A
D.2 Cleaningupmacros v v v i v e e e e 71

1 Greenstone installation and administration

This section covers where to get Greenstone3 from, how tallrisand how to run
it. The standard method of running Greenstone3 is as a JavietséNVe provide
the Tomcat servlet container to run the servlet. Standartul seevers may be able
to be configured to provide servlet support, and thereby wenibe need to use
Tomcat. Please see your web server documentation for this dbcumentation
assumes that you are using Tomcat. To access Greenstome&afloust be started
up, and then it can be accessed via a web browser.

Ant (Java’s XML based build tool) is used for compilationstallation and
running Greenstone. Thei | d. xni file is the configuration file for the Greenstone
project, andui | d. proper ti es contains parameters that can be altered by the user.

1.1 Getand install Greenstone

Greenstone3 is available for download from Sourceforge:

htt ps://sourcef or ge. net/ proj ect s/ gr eenst one3. There are Windows, Linux,
and source releases. The binary releases are self-ingtaltecutables: download
and run the file to install. A series of prompts will guide yduaugh the instal-

lation process. The source release is a gzip'd tar file. Uanibuntar this, check
build.properties, then runant instal I’ to configure and compile the code.

The Greenstoned library can be launched by running the spreagram. This
is accessible from the Start menu on Windows, or by runnieg<B- ser ver . sh/ bat
script in the top levegr eenst one3 directory. This program will start up the Tom-
cat web server and launch a browser.

Alternatively, you can start it up using Ant: rurant start’, which starts up
Tomcat, then in a browser go ot p: / /| ocal host : 8080/ gr eenst one3
(ornttp://your-conput er - nane: your - chosen- port/ gr eenst one3).

This gets you to a welcome page containing links to four s¢svithet est serviet
(this allows you to check that Tomcat is running properlye standardi brary
servlet which serveisocal si t e site with thegs2 interface; theys3l i brary servlet
which serves ocal si t e using thedef aul t Greenstone3-style interface; and the
gat eway servlet, which servegat eway site with thedef aul t interface. Theat eway
site uses a SOAP connection to communicate Wittal si t e, and demonstrates
the library working in a distributed fashion. The SOAP coctien is not enabled
by default - to enable it, runant depl oy-1ocal site’.

Greenstone3 is also available through CVS (Concurrentidfeirsy System).
This provides the latest development version, and is notagieed to be stable.
Appendix A describes how to download and install Greens3dram CVS.

1.2 How the library works

The standard library program is a Java servlet. We use thedbservlet container
to present the servlets over the web. Tomcat takes CGI-bligles and passes the

arguments to the servlet, which processes these and retyrage of HTML. As
far as an end-user is concerned, a servlet is a Java versm@Gi program. The
interaction is similar: access is via a web browser, usiggiaents in a URL.

Other types of interfaces can be used, such as Java GUI piegr8ee Sec-
tion 4.3 for details about how to make these.

1.2.1 Restarting the library

You can restart Tomcat by clicking 'Restart Server’ on thiteliserver program.
You should restart the server any time you make changes iiollogring for those
changes to take effect:

o $GSDL3HOVE/ WEB- | NF/ web. xmi
e $GSDL3SRCHOVE/ packages/ t ontat/ conf/server. xm
e any classes or jar files used by the servlets

1.3 Directory structure

Table 1 shows the file hierarchy for Greenstone3. The firdtghaows the common
stuff which can be shared between Greenstone users—theesdiloraries etc.
The second part shows the file hierarchy for the web directainjch comprises the
greenstone3 context for Tomcat, and is accessible via Torhba main directories
are for sites and interfaces: there can be several siteswgarthices per installation,
and they are described in the following section.

Two environment variables used by Greenstone3 are oftertioned in this
manual: $GSDL3SRCHOVE and $GSDL3HOVE. $GSDL3SRCHOME refers to the top-level
gr eenst one3 directory, while$GsDL3HOME refers to thexeb directory. The web di-
rectory contains everything needed to serve the Greeridary using Tomcat,
and doesn’'t necessarily need to live with the rest of the @teme3 source.

1.4 Sites and interfaces

Sites and interfaces contain the content and presentatiormation, respectively,
for the digital library. A site is comprised of a set of colliems and possibly
some site-wide services. An interface (in this web-basedetecontext) is a set
of images along with a set of XSLT files used for translating rotput from the
library into an appropriate form—HTML in general.

One Greenstone3 installation can have many sites anddoesrfand these can
be paired in different combinations. One instantiation &feavlet uses one site
and one interface, so every specified pairing results in agewlet instance. For
example, a single site might be served with two differergrifatces. This provides
different modes of access to the same content. e.g. HTML vd . Wivlperhaps

Table 1: The Greenstone directory structure

directory description

greenstone3 The main installation directory—$GSDL3SRGHEs set to
this directory

greenstone3/src Source code lives here

greenstone3/src/java/ main Greenstone3 java source code

greenstone3/src/packages Imported source packages ftwn systems e.g. indexing
packages may go here

greenstone3/lib Shared library files

greenstone3/lib/java Java jar files not needed in the Greee3 runtime

greenstone3/lib/jni Jar files and shared library files (jgdljb, .dIl) needed for JNI
components

greenstone3/resources any resources that may be needed

greenstone3/resources/soap soap service descriptisn file

greenstone3/bin executable stuff lives here

greenstone3/bin/script some Perl and/or shell scripts

greenstone3/packages External packages that may bdddsaal part of greenstone,
e.g. Tomcat

greenstone3/docs Documentation

greenstone3/gli Greenstone Librarian Interface code

greenstone3/gs2build collection building code

greenstone3/web This is where the web site is defined. Anic 38T ML files

can go here. This directory is the root directory used by Tom-
cat when serving Greenstone3. $GSDL3HOME is set to this

directory.

greenstone3/web/WEB-INF The web.xml file lives here (ssrebnfiguration information
for Tomcat)

greenstone3/web/WEB-INF/classes Individual class fitkelied by the servlet go in here, also prop-

erties files for java resource bundles - used to handle albtie
guage specific text. This directory is on the servlet clagspa
greenstone3/web/WEB-INF/lib jar files needed by the sés\de here
greenstone3/web/sites Contains directories for diffeséas—a site is a set of collec-
tions and services served by a single MessageRouter (MR). Th
MR may have connections (e.g. soap) to other sites

greenstone3/web/sites/localsite An example site - tleecsibfiguration file lives here
greenstone3/web/sites/localsite/collect The colledtidirectory
greenstone3/web/sites/localsite/images Site specifig@s
greenstone3/web/sites/localsite/transforms Site §pdansforms
greenstone3/web/interfaces Contains directories féemint interfaces - an interface is de-
fined by its images and XSLT files
greenstone3/web/interfaces/default The default interfa
greenstone3/web/interfaces/default/images The imagehd default interface
greenstone3/web/interfaces/default/js The javasdbpaiies for the default interface
greenstone3/web/interfaces/default/style The CSSdtglets for the default interface
greenstone3/web/interfaces/default/transforms TheTX8és for the default interface
greenstone3/web/applet jar files needed by applets canrgo he

providing a completely different look and feel for diffeteaudiences. Alterna-
tively, a standard interface may be used with many diffesstgs—providing a
consistent mode of access to a lot of different content.

Collections live in thecol | ect directory of a site. Any collections that are
found in this directory when the servlet is initialized wilke loaded up. Public
collections will appear on the library home page, while até/collections will be
hidden. These can still be accessed by typing in cgi arguisnéullections require
valid configuration files, but apart from this, nothing neéal$e done to the site
to use new collections. Collections added while Tomcat ising will not be
noticed automatically. Either the server needs to be restapr a configuration
request may be sent to the library, triggering a (re)loadhef ¢ollection (this is
described in Section 1.7).

There are two sites that come with the distributiontal si t e, andgat eway.

I ocal si t e has several demo collections, whiet eway has nonegat eway spec-

ifies that a SOAP connection should be madedeal sit e. Getting this to work

involves setting up a soap server for localsite: see Se&tifam details. There are
also two interfaces provided in the distributiogef aul t andgs2. The default in-

terface is a generic Greenstone3 interface, whilgytizenterface aims to look like
the old Greenstone2 interface.

Each site and interface has a configuration file which spsqgifsgameters for
the site or interface—these are described in Section 1.6.

1.5 Configuring Tomcat

The file$GSDL3HOVE/ VEB- | NF/ web. xm contains the configuration information for
Tomcat. It tells Tomcat what servlets to load, what initiafgmeters to pass them,
and what web names map to the servlets. There are four sespetified in
web.xml (these correspond to the four servlet links in thé&carme page for Green-
stone3): one is a test servlet that just prints “hello greeres’ to a web page. This
is useful if you are having trouble getting Tomcat set up. otier three are the
Greenstone library servlets described in Section Libyary, gs3library and
gat eway. Each servlet must specify which site and which interfacest. Having
multiple servlets provides a way of serving different siteisthe same site with a
different style of presentation. t e_name andi nt er f ace_nane are just two exam-
ples of initialization parameters used by the library setsl The full list is shown
in Table 2.

For more details about Tomcat see Appendix B.

1.6 Configuring a Greenstone library

Initial Greenstone3 system configuration is determined Bgtaof XML config-
uration files. Each site has a configuration file that bindsup&ters for the site,
siteConfig. xm . Each interface has a configuration filet er f aceConfi g. xm ,
that specifies parameters for the interface. Collectiore bhve several config-

Table 2: Greenstone servlet initialization parameters

name sample value description
library_name library the web name of the servlet
interfacename default the name of the interface to use
site name localsite the name of the local site to use (use either
site.name or the three remasgte parameters)
remotesite. name org.greenstone.sitel the name of a remote site (caythérag??)
remotesite type soap the type of server running on the site
remotesite. address http://www.greenstone.org/The address of the server
greenstone3/services/
localsite
defaultlang en the default language for the interface
receptionistclass MyReceptionist (optional) specifies an alternatieedptionist
to use (default is DefaultReceptionist)
messageroutetlass NewMessageRouter (optional) specifies an altemdidessage-
Router to use (default is MessageRouter)
paramsclass GS2Params (optional) specifies an alternative GBRBara
class to use

uration files; these are discussed in Section 2.3. The coafign files are read
in when the system is initialized, and their contents ardveddn memory. This
means that changes made to these files once the system iagumitli not take
immediate effect. Tomcat needs to be restarted for chamgteetinterface con-
figuration file to take effect. However, changes to the sitgfigoiration file can be
incorporated sending a system command to the library. Thera series of sys-
tem commands that can be sent to the library to induce recoatign of different
modules, including reloading the whole site. This removesrteed to restart the
system to reflect these changes. These commands are ddsnribection 1.7.

1.6.1 Site configuration file

The file siteConfi g. xm specifies the URI for the sitd ¢cal Si t eNane), the
HTTP address for site resources {pAddr ess), any Servi ced ust er s that the
site provides (for example, collection building), assf vi ceRacks that do not be-
long to a cluster or collection, and a list of known externiéésto connect to.
Collections are not specified in the site configuration fila, ére determined by
the contents of the site’s collect directory.

The HTTP address is used for retrieving resources from asigde the XML
protocol. Because a site is HTTP accessible through Toracgfiles (e.g. images)
belonging to that site or to its collections can be specifiethe HTML of a page
by a URL. This avoids having to retrieve these files from a rensite via the XML
protocol.

ICurrently, sites live inside the Tomcat greenstone3 rootex, and therefore all their content
is accessible over HTTP via the Tomcat address. We need 1 gaes can be restricted. Also, if
we use a different protocol, then resources from remote sitay need to come through the XML.
Also, if we are running locally without using Tomcat, we magnwto get them via file:// rather than

<si teConfig>
<l ocal Si teNarme val ue="org. greenstone. |l ocalsite"/>
<ht t pAddr ess val ue="http://1 ocal host: 8080/ greenst one3/sites/| ocal site"/>
<servi ceC usterList/>
<servi ceRackLi st/ >
<sitelList/>
</ si teConfig>

<siteConfi g>
<l ocal Si t eNanme val ue="org. greenstone. gsdl 1"/ >
<ht t pAddr ess val ue="http://1 ocal host: 8080/ greenstone3/sites/gsdl 1"/>
<servi ced usterList>
<servi ceCl uster nane="buil d">
<net adat aLi st >
<net adata nanme="Titl e">Col | ecti on buil der </ net adat a>
<net adat a name="Descri ption">Builds collections in a
gsdl 2- styl e manner </ net adat a>
</ met adat aLi st >
<servi ceRackLi st >
<servi ceRack nanme="GS2Construct"/>
</ servi ceRackLi st >
</serviced uster>
</serviceC usterlList>
<siteList>
<site nane="org. greenstone. |l ocal site"
address="http://1ocal host: 8080/ greenstone3/ services/|ocal site"
type="soap"/>
</sitelList>
</ si teConfi g>

Figure 1: Two sample site configuration files

Figure 1 shows two example site configuration files. The fixsingple is for
a rudimentary site with no site-wide services, which doescomnect to any ex-
ternal sites. The second example is for a site with one sile-wervice clus-
ter - a collection building cluster. It also connects to thstfsite using SOAP.
These two sites happen to be running on the same machind) ishidny they can
usel ocal host in the address. For sitgsdl 1 to talk to sitel ocal site, a SOAP
server must be run farocal si t e. The address of the SOAP server, in this case, is
http://1ocal host: 8080/ greenstone3/services/|ocal site.

Another element that can appear in a site configuration fiteji$ acelLi st .
This must have and attribute, and may contain one or marepl ace elements.
Replace elements are discussed in Section 2.3. The lislfiowasi t eConf i g. xm
file can be applied to any collection by addingepl aceLi st Ref element (with
the appropriate d attribute) to itscol I ecti onConfi g. xni file.

http://.

10

1.6.2 Interface configuration file

The interface configuration filent er f aceConfi g. xmi lists all the actions that the
interface knows about at the start (other ones can be loageahdcally). Actions
create the web pages for the library: there is generally oct@A per type of page.
For example, a query action produces the pages for searchinitp a document
action displays the documents. The configuration file spgecifthat short name
each action maps to (this is used in library URLSs for the ai¢agtparameter) e.qg.
QueryAction should use=q. If the interface uses XSLT, it specifies what XSLT
file should be used for each action and possibly each subadtfis makes it easy
for developers to implement and use different actions ang®1. T files without
recompilation. The server must be restarted, however.

It also lists all the languages that the interface text filegehbeen translated
into. These have aare attribute, which is the 1ISO code for the language, and a
di spl ayEl enent which gives the language name in that language (note that thi
file should be encoded in UTF-8). This language list is usedhenPreferences
page to allow the user to change the interface language.il®etahow to add a
new language to a Greenstone3 library are shown in Sectt8.2.

An opti onLi st element can be used to disable or enable some optional func-
tionality for the interface. Currently there are three ops that can be enabled:

highlightQueryTerms Whether search term highlightingviaiiable
or not

berryBaskets Whether berry basket functionality is avail-
able or not

displayAnnotationService Whether any annotation sesv/(specified in
the site config file) should be displayed with a
document or not.
An interface may be based on an existing one, for exampleg$Banterface
is based on the default interface. This means that it willarsg images or tem-
plates from the base one unless overridden in the currentTdrebasel nt er f ace
attribute of the<i nt er f aceConf i g> element is used to specify the base interface.

1.7 Run-time re-initialization

When Tomcat is started up, the site and interface configurdilies are read in, and
actions/services/collections loaded as necessary. Thiggocation is then static
unless Tomcat is restarted, or re-configuration commarsde s

There are several commands that can be issued to Tomcatitblaaing to
restart the server. These can reload the entire site, oirjdstidual collections.
Unfortunately at present there are no commands to recoefithe interface, so
if the interface configuration file has changed, Tomcat magtestarted for those
changes to take effect. Similarly, if the Java classes amifirad, Tomcat must be
restarted then too.

Currently, the runtime configuration commands can only lmessed by typing

11

<i nterfaceConfig>
<acti onLi st >
<action name='p' class='PageAction’ >
<subaction nane=" home’ xslt="hone.xsl’'/>
<subacti on nane="about’ xslt="about.xsl’'/>
<subaction nane="hel p’ xslt="help.xsl’'/>
<subaction nane="pref’ xslt="pref.xsl’'/>

<subacti on nane='nav’ xslt="nav.xsl’/><l-- used for the
coll ecti on header frane -->
<subaction nane="htm" xslt="htm .xsl"/> <!-- used to put an
external page into a frane with a collection header-->
</ action>

<action nane='q class=" QueryAction’ xslt="basicquery.xsl’'/>
<action nanme="b’ class=" GS2BrowseAction’ xslt="classifier.xsl’/>
<action name="a’ class="AppletAction’ xslt="applet.xsl’'/>
<action nane='d class="Docunent Action’ xslt="docunment.xsl’/>
<action nanme='xd’ class=" XM_Docunent Acti on’ >
<subacti on nane="toc’ xslt="docunent-toc.xsl’'/>
<subaction nane="text’' xslt="docunent-content.xsl’/>
</ action>
<action nanme='pr’ class='ProcessAction’ xslt='process.xsl’/>
<action nane='s’ class=" SystemAction’ xslt="systemxsl’'/>
<action name='g’ class=' General Action’ >
<subaction nane="berry" xslt="berry.xsl’'/>
</ action>
</ actionLi st>
<l anguagelLi st >
<l anguage nane="en">
<di spl ayl t em nane=" nane’ >Engl i sh</ di spl ayl t en>
</l anguage>
<l anguage nane="fr">
<di spl ayl t em nane=" nane’ >Fr anai s</ di spl ayl t en>
</l anguage>
<l anguage nane='es’ >
<di spl ayl t em nane=" nane’ >Espaol </ di spl ayl t en>
</l anguage>
</l anguagelLi st >
<opti onLi st >
<option name="hi ghl i ght QueryTermnms" val ue="true"/>
<opti on nanme="berryBaskets" val ue="true"/>
</ optionList>
</interfaceConfig>

Figure 2: Default interface configuration file

12

Table 3: Example run-time configuration arguments.

a=s&sa=c

a=s&sa=c&sc=XXX

a=s&sa=a

a=sé&sa=d

a=sé&sa=d&sc=XXX

reconfigures the whole site. Reads in siteConfig.xml, redcgtithe
collections. Just part of this can be specified with anothgu-a
mentss (system subset). The valid values amel | ecti onLi st ,
sitelList,serviceList,clusterlList.

reconfigures the XXX collection or clustes.s can also be used here,
valid values areret adat aLi st andser vi ceLi st.

(re)activate a specific module. Modules are specified usimgargu-
ments,st (system module type) argh (system module name). Valid
types arecol | ection,cluster site.

deactivate a modulest andsn can be used here too. Valid types are
coll ection,cluster, site, servi ce. Modules are removed
from the current configuration, but will reappear if Tomcatéstarted.
deactivate a module belonging to the XXX collection or chusit and
sn can be used here too. Valid types aex vi ce.

arguments into the URL; there is no nice web form yet to da this

The arguments are entered after theorary? part of the URL. There are
three types of commands: configure, activate, deactivatesd are specified by
a=s&sa=c, a=s&sa=a, anda=s&sa=d, respectively { is action,sa is subaction). By
default, the requests are sent to the MessageRouter, lyutdinebe sent to a col-
lection/cluster by the addition afc=xxx, wherexxx is the name of the collection
or cluster. Table 3 describes the commands and argumentsitimeare detail.

13

2 Using Greenstone3

Once Greenstone3 is installed, the sample collections eaacbessed. The in-
stallation comes with several example collections, andi@e2.1 describes these
collections and how to use them. Section 2.2 describes hdwitd new collec-
tions.

2.1 Using a collection

A collection typically consists of a set of documents, whichuld be text, HTML,
word, PDF, images, bibliographic records etc, along witlne@ccess methods, or
“services”. Typical access methods include searching owsing for document
identifiers, and retrieval of content or metadata for thakemiifiers. Searching in-
volves entering words or phrases and getting back lists ofic@nts that contain
those words. The search terms may be restricted to pantitields of the docu-
ment.

Browsing involves navigating pre-defined hierarchies afuduents, following
links of interest to find documents. The hierarchies may bestacted on different
metadata fields, for example, alphabetical lists of Tittesa hierarchy of Subject
classifications. Clicking on a bookshelf icon takes you tamwdr level in the
hierarchy, while clicking on a book or page icon takes you tlmeument.

In the standard interface that comes with Greenstdne8sllections in a digital
library are presented in the following manner. The ’homeg@af the library
shows a list of all the public collections in that library. i€king on a collection
link takes you to the home page for the collection, which wiétba collection’s
‘about’ page. The standard page banner for a collectiond@oknething like that
shown in Figure 3.

Greenstone2
MG De mo HOME HELP PREFERENCES
Browse Text Search

Figure 3: A sample collection page banner

The image at the top left is a link to the collection’s home gagrhe top
right has buttons to link to the library home page, help arelgrences pages. All
the available services are arrayed along a navigation argahe bottom of the
banner. Clicking on a name accesses that service.

Search type services generally provide a form to fill in, vaitttameters includ-
ing what field or granularity to search, and the query itsélficking the search
button carries out the search, and a list of matching doctsneifl be displayed.
Clicking on the icons in the result list takes you to the doeatritself.

2of course, this is all customizable

14

Once you are looking at a document, clicking the open book &fothe top
of the document, underneath the navigation bar, will take lyack to the service
page that you accessed the document from.

2.2 Building a collection

There are three ways to get a new collection into Greenstofie8 most common
way is to use the Greenstone Librarian Interface to createllaction. If you
have existing collections in a Greenstone?2 installatibasé can be imported into
Greenstone3d. Thirdly, you can use the Perl command lin€libgilscripts directly.

Collections live in thecol | ect directory of a site. As described in Section 1.4,
there can be several sites per Greenstone3 installatioa.cdlfect directory is at
$GSDL3HOVE/ si t es/ si t e- nane/ col | ect , where site-name is the name of the site
you want your new collection to belong to.

The following three sections briefly describe how to creatml#ection using
GLI, how to import a collection from Greenstone2, and how $e stommand line
building. Once a collection has been built (and is locatedhi collect direc-
tory), the library server needs to be notified that there i®wa pollection. This
can be accomplished in two wayslf you are the library administrator, you can
restart Tomcat. The library servlet will then be createcksifr, and will discover
the new collection when it scans the collect directory far tollection list. Al-
ternatively, an activate collection command can be issodtd servlet, using the
argumentsa=s&sa=a&st =col | ecti on&n=col | name, wherecol | name should be
replaced with the collection name—this tells the librarpgmam to (re)load the
col | nane collection.

2.2.1 Using the Librarian Interface

The Greenstone Librarian Interface (GLI) can be used totereallections. The
procedure is the same as for Greenstone2, but it works in erStene3 context. It
can be started under Windows by selecting Greenstone labrarterface from the
Greenstone 3 Digital Library menu in the Program Files sectif the Start menu.
On Linux, runant gli from the greenst one3 directory, or run. /gl i 4gs3. sh
from the$GSDL3SRCHOME/ gl i directory.

Currently, the GLI works almost exactly the same as for Gsemme2. Col-
lection configuration is done in a Greenstone2 manner. The diiference is that
Greenstone3 has different sites and interfaces and serviiereas Greenstone?2
has a single collect directory, and a single runtime cgi foyg

The GLI for Greenstone3 has a couple of new configurationrpaters: site
and servlet. It operates within a single site—you can ediete, and create new
collections within this site. A servlet is also specified fbat site—this is used
when previewing a collection. While you are working in ongsiyou cannot

3and eventually there will also probably be automatic pgllior new collections
“Eventually the GLI will be modified to use Greenstone3 XML figaration files.

15

edit collections from another site. However, you can baselation on one
from another site. To change the working site and/or sergetto Preferences-
>Connection in the File menu. By default, the GLI will use siteal site, and
servletl i brary.

Collection building using the GLI will use the Greenstone2lBcripts and plu-
gins. At the conclusion of the Greenstone2 build processnaarsion script will
be run to create the Greenstone3 configuration files. Thisyeet format state-
ments are no longer ’live’—changing these will require ajpesto the Greenstone3
configuration files. Clicking the Preview Collection buttenil re-run the configu-
ration file conversion script. If you change anything on tleenfrat panel, you will
need to click Preview Collection. Just reloading the coitecvia a browser will
not be enough.

Detailed instructions about using the GLI can be found iniSes 3.1 and 3.2
of the Greenstone2 User’'s Guidesg- User - en. pdf). This can be found in your
Greenstone?2 installation, or in ti$&SDL3SRCHOVE/ docs/ manual directory if you
have installed Greenstone3 from a distribution.

2.2.2 Importing from Greenstone2

Pre-built Greenstone?2 collections can also be used in Gree®3. The collection
folder should be copied to the collect directory of the sitis ito appear in (or a
symbolic link may be used if possible). The Greenstone3ima system requires
different configuration files for a collection, so you needun a conversion script.
All this does is create the newol | ecti onConfig.xm andbuil dConfig. xm
from the oldcol | ect . cf g andbui | d. cf g files. It does not change the collection
in any way, so it can still be used by Greenstone2 software.

The conversion script isonvert col | fromgs2. pl . To run it, make sure you
have rursour ce set up. bash (orset up in Windows) in thesGSDL3SRCHOVE/ gs2bui | d
directory (as well as running the standageB- set up command). Then you need
to specify the path to the collect directory and the collatihame as parameters to
the conversion script. For example,

convert _coll _fromgs2.pl -collectdir
$GSDL3HOVE/ sites/ | ocal sitel/coll ect gs2ngdeno

The script attempts to create Greenstone3 format statesnfrembh the old Green-
stone2 ones. The conversion may not always work properly te collection
looks a bit strange under Greenstone3, you should checkotheaf statements.
Format statements are described in Section 2.4.

Once again, to have the collection recognized by the libsarylet, you can
either restart Tomcat, or load it dynamically.

2.2.3 Using command line building

This is the same procedure as for Greenstone2 command littenigy with the
addition of a final step to create the Greenstone3 configurdties. The basic

16

steps are (for a new collection called testcol):
Linux:

cd greenstone3
source gs3-setup. sh

cd gs2build
sour ce setup. bash
cd ../

mkcol . pl -collectdir $GSDL3HOVE sites/|ocal sitel/collect testcol

put source docunments and netadata into
$GSDL3HOVE/ sites/ | ocal sitel/collect/testcol/inport

edit $GSDL3HOMWE/ sites/local site/collect/testcol/etc/collect.cfg as
appropriate

inmport.pl -collectdir $GSDL3HOWE/ sites/| ocal site/collect testcol

bui l dcol . pl -collectdir $GSDL3HOVE/ sites/ | ocal site/collect testcol

renane the $GSDL3HOME/ sites/local site/collect/testcol/building
directory to index

convert_coll _fromgs2.pl -collectdir $GSDL3HOVE sites/ | ocal site/collect
t est col

%

Windows:

cd greenstone3
gs3-setup
cd gs2build
set up
cd ..
perl -S nkcol.pl -collectdir %SDL3HOVE% sites\|ocal site\collect testcol
put source docunments and netadata into
9%GSDL3HOVE% si t es\ | ocal site\col | ect\testcol\inport
edit %SDL3HOVE% sites\local site\lcollect\testcol\etc\collect.cfg as
appropriate
perl -S inport.pl -collectdir %SDL3HOVE% sites\| ocal site\collect testcol
perl -S buildcol.pl -collectdir %SDL3HOVE% sites\|ocal site\collect testcol
renanme the %SDL3HOVE% sites\local site\collect\testcol\building directory
to index
perl -S convert_coll _fromgs2.pl -collectdir
Y%CSDL3HOVE% sit es\ | ocal site\col |l ect testcol

Once the build process is complete, Tomcat should be pratriptecload the
collection—either by restarting the server, or by sendimgaativate collection
command to the library servlet.

Metadata for documents can be added usiigdat a. xni files. Anet adat a. xm
file has aroot element @bi r ect or yMet adat a>. This encloses a series<i | eSet >
items. Neither of these tags has any attributes. E&cheset > item includes two
parts: firstly, one or moreFi | eNane> tags, each of which encloses a regular ex-
pression to identify the files which are to be assigned theadaa. Only files in
the same directory as thet adat a. xm file, or in one of its child directories, will
be selected. The filename tag encloses the regular expressiext, e.g.:

<Fi | eName>exanpl e</ Fi | eName>

17

This would match any file containing the text ‘'example’ innsme. The sec-
ond part of thesFi | eSet > item is a<Descri pt i on>item. The<Descri pti on>tag
has no attributes, but encloses one or mavet adat a> tags. EachMet adat a>
tag contains one metadata item, i.e. a label to describe #tedata and a corre-
sponding value. TheMet adat a> tag has one compulsory attributenane’ . This
attribute gives the metadata label to add to the documenth Eat adat a> tag
also has an optional attributerrode’ . If this attribute is set toaccunul ate’ then
the value is added to the document, and any existing valugbdbmetadata item
are retained. If the attribute is set'teet* or is omitted, then any existing value of
the metadata item will be deleted.

Figure 4 shows an example metadata.xml file. Here, only oaepéttern is
found in each file set. However, tescri pt i on tag contains a number of separate
metadata items. Note that thiet | e metadata does not have th@le=accunul at e
attribute. This means that when this title is assigned toauh@nt, any existing
Ti t1 e information will be lost.

2.3 Collection configuration files

Each collection has two, or possibly three, Greenstone8gmation files,
col l ectionConfig.xm ,buil dConfig.xnl ,and optionallycol I ectionl nit.xm ,
that give metadata, display and other information for thikection. Currently,
col I ecti onConfig.xm andbuil dConfig. xm are generated frorol | ect . cfg
andbui | d. cf g. At some stage, the collection building process and thealibr
ian Interface will be modified to use these files directlyol | ect . cf g and/or
col I ectionConfig.xm includes user-defined presentation metadata for the col-
lection, such as its name and tAbout this collection text; gives formatting infor-
mation for the collection display; and also gives instroicsi on how the collection
is to be built.bui I d. cf g and/orbui | dConf i g. xn are produced by the build-time
process and include any metadata that can be determinechatidally. It also
includes configuration information for any ServiceRacksdel by the collection.
All the configuration files should be encoded using UTF-8.
The format ofcol | ect . cf g andbui | d. cf g are not discussed here. Please see
the Greenstone2 manuals for more information regardinsgtifiées.

2.3.1 collectionInit.xml

This optional file is only used for non-standard, customizaitections. It specifies
the class name of the non-standard collection class. Thesyntax so far is the
class name:

<col lectionlnit class="XM.Coll ection"/>

Section 4.4 describes an example collection where thissfilséd. Depending
on the type of collection that this is used for, one or bothhefdther configuration
files may not be needed.

18

<?xm version="1.0" encodi ng="UTF-8"7?>
<I DOCTYPE DirectoryMet adata SYSTEM "http://greenstone. org/dtd/ D rectoryMetadata
/1.0/DirectoryMetadata. dtd">
<Di r ect or yMet adat a>
<Fi | eSet >
<Fi | eName>ec160e</ Fi | eName>
<Descri ption>
<Met adata nanme="Titl e">The Courier - No.160 - Nov - Dec 1996 -
Dossi er Habitat - Country reports: Fiji , Tonga (ecl160e)</Met adat a>
<Met adat a node="accunul at e" name="Language" >Engl i sh</ Met adat a>
<Met adat a npde="accunul ate" name="Subj ect">Settl| ements and housi ng:
general works incl. |low cost housing, planning techniques, surveying,
et c. </ Met adat a>
<Met adat a npde="accunul ate" name="Subj ect">The Courier ACP 1990 - 1996
Africa- Cari bbean-Paci fic - European Uni on</ Met adat a>
<Met adat a node="accunul ate" name="Organi zati on">EC Couri er </ Met adat a>
<Met adat a npde="accunul ate" name="AZLi st">T. 1</ Met adat a>
</ Descri ption>
</ Fi | eSet >
<Fi | eSet >
<Fi | eName>b22bue</ Fi | eName>
<Descri ption>
<Metadata name="Title">Butterfly Farmi ng in Papua New Gui nea
(b22bue) </ Met adat a>
<Met adat a node="accunul at e" name="Language" >Engl i sh</ Met adat a>
<Met adat a node="accunul ate" nane="Subject">CQ her animals (mcro-
livestock, little known animals, silkworms, reptiles, frogs,
snails, ganme, etc.)</Mtadata>
<Met adat a node="accunul ate" nanme=" O gani zati on" >BOSTI D</ Met adat a>
<Met adat a node="accunul ate" nane="AZLi st">T. 1</ Met adat a>
<Met adat a node="accunul ate" name="Keyword">start a butterfly farm
</ Met adat a>
</ Descri ption>
</ Fi | eSet >
</ Di rect or yMet adat a>

Figure 4: Sample metadata.xml file

19

2.3.2 collectionConfig.xml

The collection configuration file is where the collectionidesr (e.g. a librarian)
decides what form the collection should take. So far thisdiiy includes the
presentation aspects needed by the run-time system. dtistrsl for collection
building have yet to be defined. Presentation aspects iaatotlection metadata
such as title and description, display text for indexes, famchat statements for
search results, classifiers etc. The format@fi ecti onConfi g. xm is still under
consideration. However, Figure 5 shows the parts of it tlaeheen defined so
far.

Display elements for a collection can be entered in any laggs-use ang="en’
attributes to specify which language they are in.

The<net adat aLi st > element specifies some collection metadata, such as cre-
ator. The<di spl ayl t enli st > specifies some language dependent information that
is used for collection display, such as collection name &wodtslescription. These
di spl ayl t emelements can be specified in different languages.

The<sear ch> element provides some display and formatting information f
the search indexes, while ther owse> element concerns classifiers, and<hespl ay>
element looks at document display.

Inside the<sear ch> and <br owse> elements,<di spl ayl t em> elements are
used to provide titles for the indexes or classifiers, wkiler mat > elements pro-
vide formatting instructions, typically for a document dassifier node in a list of
results. Placing thef or mat > instructions at the top level in thezar ch or br owse
element will apply the format to all the indexes or class#javhile placing it inside
an individuali ndex orcl assi fi er element will restrict that formatting instruction
to that item.

The<di spl ay> element contains optional formatting information for ths-d
play of documents. Templates that can be specified hered@etie unent Headi ng
andDocunent Cont ent . Other formatting options may also be specified here, such
as whether to display a table of contents and/or cover imagigé documents.

Format elements are described in Section 2.4.

An optional <r epl aceLi st > element can be included at the top level. This
contains a list of strings and their replacements. This iiquaarly useful for

Greenstone?2 collections that use macros.
The format is like the following:

<repl acelLi st >

<repl ace scope="text’ macro="xxx" text="yyy"/>

<repl ace scope="netadata’ nacro="xxx" bundl e="yyy" key="zzz"/>
<repl ace scope="all’ macro="xxx' netadata="yyy'/>

</ repl acelLi st >

Scope determines on what text the replacements are cauieckat , net adat a,
andal | (both text and metadata). An empty scope attribute is ebpnvéo scope=all.
Each replace type can be used with all scope values. Reglasés Java’s 'String.replaceAll’
functionality, so macro and replacement text are actuaiular expressions. The

20

<col | ectionConfig xm ns: gsf="http://ww. greenstone. org/ greenst one3/
schema/ Confi gFormat” xm ns: xslt="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<met adat aLi st >
<net adat a nane="cr eat or " >gr eenst one@s. wai kat 0. ac. nz</ et adat a>
<net adat a name="publ i c">true</ net adat a>
</ met adat aLi st >
<di spl ayl tenlLi st >
<di spl ayl tem name=" nanme’ | ang="en’ >G eenstone3 MG deno col | ecti on</di spl ayl ten>
<di spl ayl t em nanme=" description’ |lang="en’>This is a denobnstration
collection for the Greenstone3 digital library software.</displayltens
<di spl ayl tem name="i con’ | ang="en’ >gs3ngdenv. gi f </ di spl ayltenm>
<di spl ayl tem nanme="snal | i con’ | ang="en’ >gs3ngdeno_sm gi f </ di spl ayl t en>
</ di spl ayl teniLi st>
<sear ch>
<i ndex nanme="ste">
<di spl ayl t em name=" nane’ | ang="en">chapt ers</di spl aylten>
<di spl ayl t em name=" nane’ | ang="fr">chapitres</displayltenr
<di spl ayl t em nane=" nane’ | ang="es">capt ul os</di spl ayl tenr
</ i ndex>
[... nore indexes ...]
<f or mat >
<gsf:tenpl ate mat ch="docunent Node" ><td val i gn="top’ >
<gsf:link><gsf:icon/></gsf:|ink></td><td><gsf:netadata name="Title' />
</td></gsf:tenpl ate>
</ f or mat >
</ search>
<br owse>
<cl assifier name="CL1" hori zontal At Top="true’ >
<di spl ayl tem name=' nanme’ | ang="en’ >Titl es</di spl ayl tenr
</classifier>
[... more classifiers ...]
<cl assifier name="CL4">
<di spl ayl t em name=" nane’ | ang='en’ >HowTo</ di spl ayl tenr
<f or mat >
<gsf:tenpl ate mat ch="docunent Node" >

<gsf:link><gsf:netadata nane=" Keyword' />
</ gsf:link></gsf:tenplate>
</ f or mat >
</classifier>
</ br onse>
<di spl ay>
<f or mat >
<gsf:option name="coverl mages" val ue="fal se"/>
<gsf:option nane="docunent TOC' val ue="fal se"/>
</ format >
</ di spl ay>
</ col | ecti onConfi g>

Figure 5: Sample collectionConfig.xml file

21

first example is a straight textual replacement. The secranhple uses dictionary
lookups. xxx will be replaced with the (language-dependealue for key zzz in
resource bundle yyy. The third example uses metadata: xkbeveplaced by the
value of the yyy metadata for that document.

Appendix D.2 gives some examples that have been used fon&m?2 col-
lections.

2.3.3 buildConfig.xml

The filebui | dconfi g. xm is produced by the collection building process. Gener-
ally it is not necessary to look at this file, but it can be ukefuletermining what
went wrong if the collection doesn’t appear quite the wayasvplanned.

It contains metadata and other information about the citlechat can be de-
termined automatically, such as the number of documentseircollection. It also
includes a list ofser vi ceRack classes that are required to provide the services
that have been built into the collection. The serviceRaakemare Java classes
that are loaded dynamically at runtime. Any informationidiesthe serviceRack
element is specific to that service—there is no set formajur€i 6 shows an ex-
ample. This configuration file specifies that the collectibowdd load up 3 Ser-
viceRacks:GS2Br owse, GS2MGPPRet ri eve and GS2MePPSear ch. The contents of
each<servi ceRack> element are passed to the appropriate ServiceRack objects
for configuration. The:ol | ecti onConfi g. xnl file content is also passed to the
ServiceRack objects at configure time—th& mat and di spl ayl t em informa-
tion is used directly from theol | ecti onConfi g. xmi file rather than added into
bui | dConfi g. xm during building. This enables formatting and metadata ghan
incol l ectionConfig. xn to take effect in the collection without rebuilding being
necessary. However, as these files are cached, the catlew&ds to be reloaded
for the changes to appear in the library.

2.4 Formatting the collection

Part of collection design involves deciding how the coll@ttshould look. Green-
stone3 has a default 'look’ for a collection, so this is optib However, the default
may not suit the purposes of some collections, so many patteetlook of a col-
lection can be determined by the collection designer.

In standard Greenstone3, the library is served to a web lenobig a servlet,
and the HTML is generated using XSLT. XSLT templates are usddrmat all
the parts of the pages. These templates can be overridderloging them in the
col I ectionConfig.xm file. Some commonly overridden templates are those for
formatting lists: search results list, classifier browsingrarchies, and for parts of
the document display.

Real XSLT templates for formatting search results or cfagslists are quite
complicated, and not at all easy for a new user to write. Farmgde, the following

22

<bui | dConfi g>
<net adat aLi st >
<met adat a nanme="nunDocs" >11</ net adat a>
<net adat a nanme="bui | dType" >ngpp</ et adat a>
</ nmet adat alLi st >
<servi ceRackLi st >
<servi ceRack name="GS2Br owse" >
<i ndexSt em nane="gs2ngppdeno"/ >
<cl assifierlList>

<cl assifier name="CL1" content="Title"/>
<cl assi fier name="CL2" content="Subject" />
<cl assifier nane="CL3" content="0Organization" />
<cl assi fier name="CL4" content="How 0" />
</classifierlList>
</ servi ceRack>
<servi ceRack name="GS2MGPPRetri eve" >
<i ndexSt em nane="gs2ngppdeno"/ >
<def aul t Level nanme="Sec" />
</ servi ceRack>
<servi ceRack nanme="GS2M3PPSear ch" >
<i ndexSt em nane="gs2ngppdeno"/ >
<def aul t Level nanme="Sec" />
<l evel Li st >
<l evel nane="Sec" />
<l evel nane="Doc" />
</l evel Li st>
<fieldList>
<field shortname="2zz" name="allfields" />
<field shortname="TX" nane="text" />
<field shortname="DL" nane="dls.Title" />
<field shortnane="DS" nane="dl s. Subj ect" />
<field shortname="DO'" nanme="dl s. Organi zation" />

</fieldList>
<sear chTypeLi st >
<sear chType name="fornt />
<searchType nane="plain" />
</ sear chTypelLi st >
<i ndexOpt i onLi st >
<i ndexOpti on nane="stem ndexes" val ue="3"/>
<i ndexOpti on nanme="maxnumeric" val ue="4"/>
</indexOpti onLi st>
<def aul t | ndex name="idx" />
<i ndexLi st >
<i ndex nane="i dx"
</ i ndexLi st >
</ servi ceRack>
</ servi ceRackLi st >
</ bui | dConfi g>

/>

Figure 6: Sample buildConfig.xml file (gs2mgppdemo coll@cyi

23

is a sample template for formatting a classifier list, to shk@yword metadata as
a link to the document.

<xsl :tenpl ate nat ch="document Node" priority="2"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl : param nanme="col | Nane"/ >
<td><a href="{$library_nane}?a=d&anp; c={ $col | Nane} &anp;
d={ @odel D} &anp; dt ={ @ocType} " ><xsl : val ue- of
sel ect =" et adat aLi st/ met adat a[@anme=" Keyword'] "/ ></ a>
</td>
</ xsl :tenpl at e>

To write this, the user would need to know that:

e the variables! i br ar y_nane exists,

¢ the collection name is passed in as a parameter catlecdNane

e metadata for a document is found ik@et adat aLi st > and that its form is
<net adat a nane="Keywor d" >t he val ue</ net adat a>

e the arguments needed for the link to the documentaare@a, c, d, a,
dt.

We can use XSLT to transform XML into XSLT. Greenstone3 pd@& a sim-
plified set of formatting commands, written in XML, which Wide transformed
into proper XSLT. The user specifies<asf: t enpl at e> for what they want to
format—these typically matciiocunent Node or cl assi fi er Node (for a node in a
classification hierarchy).

The template above can be represented as:

<gsf:tenpl at e mat ch=" docunent Node’ >
<t d><gsf:|ink><gsf: metadata name=" Keyword’' /></gsf:link></td>
</ gsf:tenpl ate>

Table 4 shows the set ofgsf’ (Greenstone Format) elements. If you have
come from a Greenstone2 background, Appendix D.1 showsnGieme2 format
elements and their equivalents in Greenstone3 .

The <gsf : net adat a> elements are used to output metadata values. The sim-
plest case isgsf: net adat a name="Titl e’/ >—this outputs the Title metadata
for the current document or section. Namespaces are imydn&ze: if the Title
metadata is in the Dublin Core (dc) namespace, then the atesheuld look like
<gsf: metadata name="dc. Titl e’/ >. There are three other attributes for this el-
ement. The attributeul ti pl e is used when there may be more than one value
for the selected metadata. For instance, one document ridytéaseveral clas-
sification categories, and therefore may have multiple &ihjnetadata values.
Addingnul ti pl e=" true’ to the<gsf: net adat a> element will retrieve all values,
not just the first one. Multiple values are separated by cosnbyadefault. The
separ at or attribute is used to change the separating string. For elegragding
separator=": ' tothe element will separate all values by a colon and a space.

24

Table 4: Format elements for GSF format language

Element

Description

<gsf:text/>

The document’s text

<gsf:link>. ..</gsf:link>
<gsf:link type="document’>. ..

The HTML link to the document itself
Same as above

</ gsf:link>

<gsf:link type="classifier’ > .. A link to a classification node (use in classifierNode

</gsf:link> templates)

<gsf:link type='source’>. .. The HTML link to the original file—set for doc-

</ gsf:link> uments that have been converted from e.g. Word,
PDF, PS

<gsf:icon/> An appropriate icon

<gsf:icon type= docunent’/> same as above

<gsf:icon type='classifier'/> bookshelf icon for classification nodes

<gsf:icon type="source' /> An appropriate icon for the original file e.g. Word,
PDF icon

<gsf:nmetadata name="Title /> The value of a metadata element for the current doc-

<gsf:netadata nane="Title’
sel ect =’ sel ect-type’
[separator="y’' multiple="true]/>

<gsf: met adat a name=' Dat e’
format =" format Date’ / >

ument or section, in this case, Title

A more extended selection of metadata values. The
select field can be one of those shown in Table 5.
There are two optional attributes: separator gives a
String that will be used to separate the fields, de-
faultis “, “, and if multiple is set to true, looks for
multiple values at each section.

The value of a metadata element for the current
document, formatted in some way. Current for-
matting options available are formatDate: turns
'20040201" into '01 February 2004', and format-
Language: turns 'en’ into 'English’, both in a lan-
guage dependent manner.

<gsf: choose- net adat a>

<gsf: netadata nanme=' netaA />
<gsf: nmetadata name='netaB' />
<gsf: nmetadata name='netaC />
</ gsf:choose- net adat a>

A choice of metadata. Will select the first existing
one. the metadata elements can have the select, sep-
arator and multiple attributes like normal.

<gsf:switch preprocess=

' preprocess-type’ >
<gsf:nmetadata name="Title />
<gsf:when test="test-type’

t est - val ue=" xxx’ >... </ gsf: when>
<gsf:when test="test-type’

t est -val ue="yyy’ >. .. </ gsf: when>

<gsf:otherw se>...</gsf:otherw se>

</ gsf:swtch>

switch on the value of a particular metadata - the
metadata is specified in gsf:metadata, has the same
attributes as normal.

25

Table 5: Select types for metadata format elements
Select Type Description

current The current section

parent The immediate parent section

ancestors All the parents back to the root (topmost) section
root The root or topmost section

siblings All the sibling sections

children The immediate child sections of the current sectio

descendants All the descendent sections

Sometimes you may want to display metadata values for sesctither than the
current one. For example, in the mgppdemo collection, insackelist we display
the Titles of all the enclosing sections, followed by thdeTdf the current section,
all separated by semi-colons. The display ends up lookingesining like:Farming
snails 2; Starting out; Selecting your snails whereSdlecting your snailsis the Title
of the section in the results list, afdrming snails 2 andStarting out are the Titles
of the enclosing sections. Thel ect attribute is used to display metadata for
sections other than the current one. Table 5 shows the ap#weailable for this
attribute. Thesepar at or attribute is used here also, to specify the separating text.

To get the previous metadata, the format statement would tieesfollowing
init:
<gsf:metadata nane="Titl e’ select="ancestors’ separator="; '/>;

<gsf:netadata name="Title' />

The<gsf : choose- net adat a> element selects the first available metadata value
from the list of options.

<gsf: choose- net adat a>
<gsf:nmetadata nane="dc. Title' />
<gsf:netadata nane="dls. Title />
<gsf:nmetadata name="Title />

</ gsf: choose- net adat a>

This will display dls.Title if available, otherwise it willse dc.Title if available,
otherwise it will use the Title metadata. If there are no esldor any of these
metadata elements, then nothing will be displayed.

The<gsf: swi t ch>element allows different formatting depending on the value
of a specified metadata element. For example, the followintgk statement could
be used to display a different icon for each document in alégiending on which
organization it came from.

<gsf:switch preprocess="tolLower;stripSpace >
<gsf: netadata nane=" Organi zation’' />
<gsf:when test="equal s’ test-val ue="bostid’ >
<!-- output BOSTID inmage --></gsf:when>
<gsf:when test="equal s’ test-val ue=" worl dbank’ >
<!-- output world bank image --></gsf:when>
<gsf: ot herw se><!-- output default inage--></gsf:otherw se>
</ gsf:swtch>

26

Table 6: Formatting options

option name values description

coverimages true, false whether or not to display cover esag
for documents

documentTOC true, false whether or not to display the talble o
contents for the document

Preprocessing of the metadata value is optional. The prepsotypes are
t oLower (make the value lowercasepUpper (make the value uppercase)y i pSpace
(removes any whitespace from the value). These operatiensaaried out on the
value of the selected metadata before the test is carried\ultiple processing
types can be specified, separated by ; and they will be apipligre order specified
(from left to right).

Each option specifies a test and a test value. Test valuesisireekt. Tests
includestartsWth, cont ai ns, exi sts, equal s, endsW t h. Exists doesn’t need
a test value. Having an otherwise option ensures that samgetvill be displayed
even when none of the tests match.

If none of the gsf elements meets your needs for formattirt, Xcan be en-
tered directly into the format element, giving the colleatidesigner full flexibility
over how the collection appears.

The collection specific templates are added into the cordtgur filecol | ecti onConfi g. xmi .
Any templates found in the XSLT files can be overridden. Thpartant part to
adding templates into the configuration file is determinirigeve to put them. For-
matting templates cannot go just anywhere—there are stanpdaces for them.
Figure 7 shows the positions that templates can occur.

There are also formatting instructions that are not teregldiut are options.
These are described in Table 6. They are entered into thegcoafion file like
<gsf:option nane="coverl nmages’ value="false' />

Note, format templates are added into the XSLT files befoaasforming,
while the options are added into the page source, and usedisin the XSLT.

2.4.1 Changing the service text strings

Each collection has a set of services which are the accestsor the information
in the collection. Each service has a set of text strings Wwhie used to display
it. These include name, description, the text on the subuatibbh, and names and
descriptions of all the parameters to the service.

These text strings are found.ipr oper t i es files, iN$GSDL3HOVE/ VEB- | NF/ ¢l asses.
The names of the files are based on class names. Subclass#fioartheir own
properties, or can use their parent class ones. For examles; act Sear ch de-
fines strings for th@ext Quer y service, inAbst r act Sear ch. properti es. GS2MGSear ch
just uses these default ones, so doesn't need its own piegpéle.

A patrticular collection can override the properties for aeyvice. For example,
if a collection uses thes2mssear ch service rack (look in théui | dConfi g. xm

27

<col | ecti onConfi g>
<met adat aLi st/ >
<di spl ayl tenLi st/ >
<sear ch>
<format> <!--Put here tenplates related to searching and
the query page. The common one is the document Node
tenplate -->
<gsf:tenpl ate mat ch=" docunent Node’ >. .. </ gsf:tenpl at e>

</ f or mat >
</ search>
<br owse>
<cl assi fier name="xx'>
<format ><!-- put here tenplates related to formating a

particul ar classifier page. Common ones are docunent Node
and cl assi fi er Node tenpl ates-->
<gsf:tenpl ate mat ch="docunent Node’ >. .. </ gsf:tenpl at e>
<gsf:tenplate match="cl assifierNode’ >...</gsf:tenpl ate>
<gsf:tenplate nmatch="cl assifierNode’ node="horizontal’>...
</ gsf:tenpl ate>
</ f or mat >
</classifier>
<classifier> ..</classifier>
<format ><!-- formatting for all the classifiers. these wll
be overridden by any classifier specific formatting
instructions --></fornmat>
</ br owse>
<di spl ay>
<format ><!-- here goes any formatting relating to the display
of the docunents. These are generally nanmed tenpl ates,
and format options -->
<gsf:tenpl ate name="docunent Content’ >...</gsf:tenpl ate>
<gsf:option name=" TOC value="true'/>
</ f or mat >
</ di spl ay>
</ col | ecti onConfi g>

Figure 7: Places for format statements

28

file for a list of service racks used), and the collection deiilwants to change the
text associated with this service, they can p@samssear ch. properti es file in
the resources directory of the collection. After a recoriégof the collection, this
will be used in preference to the one in the default resoudaestory.

2.5 Customizing the interface

Format statements in the collection configuration files mteva way to change
small parts of the collection display. For large scale cmizations to a collection,
or ones that apply to a site as a whole, a second mechanisnailalde. The
interface is defined by a set of XSLT files that transform thgepdata into HTML.
Any of these files can be overridden to provide specializexpldy, on a site or
collection basis.

The first section looks at customizing the existing intezfawhile the second
section looks at defining a whole new interface. The lasti@ectescribes how to
add a new language translation of an interface.

2.5.1 Modifying an existing interface

Most of an interface is defined by XSLT files, which are stomedGSDL3HOVE/ -

i nterfaces/interface-nane/transform These can be changed and the changes
will take effect straight away. If changes only apply to e@rtcollections or sites,
not everything that uses the interface, you can overrideesointhe files by putting
new ones in a different place. XSLT files are looked for in tblofving order:
collection, site, interface, default interface. (Thisremtly only apples to sites,
and therefore collections, that reside in the same Grepeasttstallation as the
interface.)

Sites and collections can have a transform directory, wisigthere customized
XSLT files should go. Any XSLT files in here will be used in pnefece to the
interface files when using this collection. For example, aliywant to have a
completely different layout for the about page of a collectiyou can put a new
about . xs| file into the collection’s r ansf or mdirectory, and this will be used in-
stead. This is what we do for the Gutenberg sample collection

This also applies to files that are included from other XSLadfilFor example
thequery. xsI for the query pages includes a file callagkr yt ool s. xsl . To have
a particular site show a different query interface eithethefse files may need to
be modified. Creating a new version of either of these andnguit in the site
t r ansf or mdirectory will work. Either the newjuery. xsl will include the default
quer yt ool s. xsl , or the defaultjuery. xsI will include the newquer yt ool s. xsl .
Thexsl : i ncl ude directives are preprocessed by the Java code and full patiesia
based on availability of the files, so that the correct onesedu

Note that you cannot include a file with the same name as theding file.
For examplequery. xsI cannot includequery. xsl (it is tempting to want to do

29

this if you just want to change one template for a particular &ind then include
the default. but you cant).

You can add the argumesitxni to any URL and you wil be returned the XML
before transformation by a stylesheet. This shows you thd.)dslge source. It
can be useful when you are trying to write some new XSLT statém

2.5.2 Defining a new interface

A new interface may be needed if different instantiationgha library require
different interfaces, or different developers want theindook and feel. Creating
a new interface will allow modifications to be made while ieavthe original one
intact.

A new interface needs a directory $&SDL3HOVE/ i nt er f aces, the name of
this directory becomes the interface name. Inside, it neeglges andt r ansf orm
directories, and amnt erfaceConfi g. xm file. TheinterfaceConfig.xm file
may specify a base interface, in which case the new intedabeneeds to define
XSLT for the parts that are different. Otherwise, it will mka full set of XSLT
files.

To use a new interface, ti$&SDL3HOVE/ WEB- | NF/ web. xni file must be edited:
either change the interface that a current servlet instanasing, or add another
servlet instantiation to the file (see Section 1.4 or Appei)i The Tomcat server
must be restarted for this to take effect.

2.5.3 Changing the interface language

The interface language can be changed by going to the prefesepage, and
choosing a language from the list, which includes all lamggainto which the
interface has been translated.
It is easy to add a new interface language to Greenstone .ulagegspecific
text strings are separated out from the rest of the systertotw for easy incorpo-
ration of new languages. These text strings are containddva resource bundle
properties files. These are plain text files consisting of\kaye pairs, located in
$GSDL3HOVE/ WEB- | NF/ ¢l asses. Each interface has one named er f ace_nane. properti es
(where' nane’ is the interface name, for exampliey er f ace_def aul t . properti es,
orinterface_gs2. properties). Each service class has one with the same name
as the class (e.gGs2sear ch. properties). To add another language all of the
base. properties files must be translated. The translated files keep the same
names, but with a language extension added. For examplesrehrrersion of
i nterface_defaul t.propertieswouldbe namednt erface.default fr.properties.
Keys will be looked up in the properties file closest to thec#fpe language.
For example, if languager ca was specified (French language, country Canada),
and the default locale wash_GB, Java would look at properties files in the fol-
lowing order, until it found the keyxxx fr CA. properties, XXXfr. properti es,
XXX_en_GB. properti es, thenxxxen. properti es, and finally the defaubkxx. properti es.

30

These new files are available straight away—to use the neyudage, add e.g.
I =fr to the arguments in the URL. To get Greenstone to add it in ¢oligt of
languages on the preferences page, an entry needs to beiatiddte languages
listin theinterfaceConfig. xm file (see Section 1.6.2). Modification of this file
requires a restart of the Tomcat server for the changes tedmgnized.

31

Library
Servlet

Process
Service onstruc
/ BuildCollectio
Receptionist, Browse Senviee=
Action / ActivateCollectipn
Service
\ =
Document CllectionFormation ‘AddDocumen)
‘Action ServiceClustg Senvice
Query
Action
Page
Action
PhindPhraseBrowse
T ———————— " (MessageRouler
PhindApplet
Service
lassifierBrowse
TextQuery d
GS2MGPPSearch lemo Service
Collection /

fao GS2Browse
Collection
letadataRetrieye \ etadataRetrieye
Service ervice
urceRetrle e S
Service lassifierBrowse
Service
GS2MGPPRetrieve

ResourceRetrieye
Service

TextQuery GS2MGPPRetrieve
Service

GS2MGPPSearch

GS2Browse

Figure 8: A simple stand-alone site.

3 Developing Greenstone3: Run-time system

[TODO: rewrite this section

runtime object structure diagram. describe the modules.
class hierarchy,

directory structure and where everything lives

message format.

overall description of message passing sequence.
configuration process - start up and runtime

page generation

]

3.1 Overview of modules??

A Greenstone3 'library’ system consists of many componeMgssageRouter,
Receptionist, Actions, Collections, ServiceRacks etgufgé 8 shows how they fit
together in a stand-alone system. The top left part is coeckwith displaying
the data, while the bottom right part is the collection daevimig part. The two
sides communicate through the MessageRouter. There is-Bbarme correspon-
dence between modules and Java classes, with the excepservizes: for cod-
ing and/or run-time efficiency reasons, several Serviceutezdmay be grouped
together into one ServiceRack class.

MessageRouter: this is the central module for a site. It controls the sibading
up all the collections, clusters, communicators needetim@ksages pass through
the MessageRouter. Communication between remote sitkgdgsadone between

32

MessageRouters, one for each site.

Collection and ServiceCluster: these are very similar, and group a set of ser-
vices into a conceptual group.. They both provide some nagdiagbout the col-
lection/cluster, and a list of services. The services aowiged by ServiceRack
objects that the collection/cluster loads up. A Collecti®ma specific type of Ser-
viceCluster. A ServiceCluster groups services that asgedlconceptually, e.g. all
the building services may be part of a cluster. What is pa& diister is specified
by the site configuration file. A Collection’s services areuped by the fact that
they all operate on some common data—the documents in tkectioh. Func-
tionally Collection and ServiceCluster are very similant lsonceptually, and to
the user, they are quite different.

Service: these provide the core functionality of the system e.grchdiag, re-
trieving documents, building collections etc. One or mowgyrbe grouped into a
single Java class (ServiceRack) for code reuse, or to amstdntiating the same
objects several times. For example, MGPP searching seraiteeed to have the
index loaded into memory.

Communicator/Server: these facilitate communication between remote mod-
ules. For example, if you want MR1 to talk to MR2, you need a @umicator-
Server pair. The Server sits on top of MR2, and MR1 talks toGbenmunicator.
Each communication type needs a new pair. So far we have eely bsing SOAP,
so we have a SOAPCommunicator and a SOAPServer.

Receptionist: this is the point of contact for the 'front end’. Its core fition-
ality involves routing requests to the Actions, but it mayrdore than that. For
example, a Receptionist may: modify the request in some wéyr® sending it to
the appropriate Action; add some data to the page respdmseis tommon to all
pages; transform the response into another form using XEhére is a hierarchy
of different Receptionist types, which is described in #ec8.9.3.

Actions: these do the job of creating the 'pages’. There is a diffeaetion for
each type of page, for example PageAction handles sent-giages, QueryAc-
tion handles queries, DocumentAction displays documertigy know a little bit
about specific service types. Based on the 'CGI’ argumergsgahin to them, they
construct requests for the system, and put together themssp into data for the
page. This data is returned to the Receptionist, which nasform it to HTML.
The various actions are described in more detail in Secti®n 3

3.2 Start up configuration

We use the Tomcat web server, which operates either stamé-ah a test mode
or in conjunction with the Apache web server. The GreenstobearyServiet
class is loaded by Tomcat and the servletist () method is called. Each time a
get / put/ post (etc.) is used, a new thread is started am@:t () / doPut () / doPost ()
(etc.) is called.

Thei ni t () method creates a new Receptionist and a new MessageRoater. D
fault classes (DefaultReceptionist, MessageRouter)see unless subclasses have

33

been specified in the servlet initiation parameters (seddet.4). The appropri-

ate system variables are set for each object (interface nsiteename, etc.) and
thenconfigure() is called on both. The MessageRouter handle is passed to the
Receptionist. The servlet then communicates only with theeRtionist, not with

the MessageRouter.

The Receptionist reads in thet erf aceConfi g. xm file (see Section 1.6.2),
and loads up all the different Action classes. Other Actiorey be loaded on
the fly as needed. Actions are added to a map, with shortnamnd®ys. Eg the
QueryAction is added with key 'q’. The Actions are passedtessageRouter ref-
erence too. If the Receptionist is a TransformingRece®ipa mapping between
shortnames and XSLT file names is also created.

The MessageRouter reads in its site configurationsfileeConfi g. xm (see
Section 1.6.1). It creates a module map that maps nameseotsbjThis is used
for routing the messages. It also keeps small chunks of XMérviselList, collec-
tionList, clusterList and siteList. These are part of whettiggturned in response to
a describe request (see Section 3.4.).

Each ServiceRack specified in the configuration file is crkatteen queried
for its list of services. Each service name is added to the, rpajnting to the
ServiceRack object. Each service is also added to the séiigic After this stage,
ServiceRacks are transparent to the system, and eachesirtlieated as a separate
module.

ServiceClusters are created and passed<thkevi ced uster> element for
configuration. They are added to the map as is, with the ¢lustme as a key.
A serviceCluster is also added to the serviceClusterList.

For each site specified, the MessageRouter creates an @ppdppe of Com-
municator object. Then it tries to get the site descriptitirthe server for the re-
mote site is up and running, this should be successful. Teewi be added to the
mapping with its site name as a key. The site’s collectiorsyises and clusters
will also be added into the static xml lists. If the server floe remote site is not
running, the site will not be included in the siteList or mtelmap. To try again
to access the site, either Tomcat must be restarted, or amenreconfigure-site
command must be sent (see Section 1.7).

The MessageRouter also looks inside the siteld ect directory, and loads
up a Collection object for each valid collection found. I§& | ectionlnit.xm
file is present, a subclass of Collection may be used. Thee@ah object reads
its bui | dConfi g. xm andcol | ecti onConfi g. xnl files, determines the metadata,
and loads ServiceRack classes based on the names specifiedddonf i g. xm .
The<servi ceRack> XML element is passed to the object to be used in configura-
tion. Thecol | ecti onConfi g. xm contents are also passed in to the ServiceRacks.
Any format or display information that the services need nhesextracted from
the collection configuration file. Collection objects areled to the module map
with their name as a key, and also a collection element ischofde the collection-
List XML.

34

3.3 Message passing

There are two types of messages used by the system: extechahtarnal mes-
sages. All messages have an enclosimgssage> element, which contains either
one or more requests, or one or more responses. In the follpdescriptions, the
message element is not shown, but is assumed to be pres¢ion kdGreenstone3
is originated by a request coming in from the outside. In laedard web-based
Greenstone, this comes from a servlet and is passed intogbepRonist. This
“external” type request is a request for a page of data, amtbots a represen-
tation of the CGI style arguments. A page of XML is returnediich can be in
HTML format or other depending on the output parameter ofrérgiest.

Messages inside the system (“internal” messages) allwollee same basic
format: message elements contain multiple request elesneninultiple response
elements. Messaging is all synchronous. The same numbespbnses as re-
guests will be returned. Currently all requests are inddpat) so any requests can
be combined into the same message, and they will be answepedasely, with
their responses being sent back in a single message.

When a page request (external request) comes in to the Rmasptit looks
at the action attribute and passes the request to the apgisgiction module.
The Action will fire one or more internal requests to the Mgsfouter, based
on the arguments. The data is gathered into a response, \ghieturned to the
Receptionist. The page that the receptionist returns agentae original request,
the response from the action and other info as needed (depmndhe type of
Receptionist). The data may be transformed in some way —h®iGreenstone
servlet we transform using XSLT to generate HTML pages.

Actions send internal style messages to the MessageR@&#aere can be an-
swered by it, others are passed on to collections, and mayheservices. Internal
requests are for simple actions, such as search, retrietzlata, retrieve document
text There are different internal request types: desciibecess, system, format,
status. Process requests do the actual work of the systeite thb other types
get auxiliary information. The format of the requests anspmnses for each in-
ternal request type are described in the following secti@xsernal style requests,
and their page responses are described in the Section abgeligeneration (Sec-
tion 3.9).

3.4 ’describe’-type messages

The most basic of the internal standard requests is “desgairself”, which can
be sent to any module in the system. The module responds w&mapredefined
piece of XML, making these requests very efficient. The raespas predefined
apart from any language-specific text strings, which areqnéther as each request
comes in, based on the language attribute of the request.

<request | ang="en’ type=describe to="'/>

35

If the t o field is empty, a request is answered by the MessageRouteexdmple
response from a MessageRouter might look like this:

<response | ang="en’ type='describe’ >
<servicelList/>
<siteList>
<site name=' org. greenst one. gsdl 1’
address="http://1ocal host: 8080/ greenstone3/services/localsite
type='soap’ />
</sitelist>
<servi ceC usterList>
<servi ceC uster name="build" />
</ serviced usterList>
<col | ecti onLi st >
<col | ecti on nane=’ org. greenst one. gsdl 1/
org. greenstone. gsdl 2/fao’ />
<col | ecti on nane=’ or g. gr eenst one. gsdl 1/ denmo’ />
<col | ecti on nane=' org. greenstone. gsdl 1/fao’ />
<col I ection nane="nyfiles />
</ col | ectionLi st>
</ response>

This MessageRouter has no individual site-wide serviceg@pty<ser vi ceLi st >),
but has a service cluster called build (which provides ctitbe importing and
building functionality). It communicates with one sit&,g. gr eenst one. gsdl 1.
It is aware of four collections. One of thesg{ i | es, belongs to it; the other three
are available through the external site. One of those dadies is actually from a
further external site.

It is possible to ask just for a specific part of the informatjarovided by a
describe request, rather than the whole thing. For exartipee two messages get
thecol | ecti onLi st and thesi t eLi st respectively:

<request | ang="en’ type='describe to="'>
<par anii st >
<par am nanme=" subset’ val ue='collectionList’'/>
</ par aniLi st >
</ request >

<request | ang="en’ type='describe to="'>
<par anii st >
<par am nanme=" subset’ value="siteList’'/>
</ par aniLi st >
</ request >

Subset options for the MessageRouter inclewe ect i onLi st , servi ced ust er Li st ,
servi celLi st,sitelList.

When a collection or service cluster is asked to descriledf jtwhat is returned
is a list of metadata, some display elements, and a list ofcges. For example,
here is such a message, along with a sample response.

<request | ang="en’ type='describe’ to= ngppdeno’ />

36

<response frone"ngppdenp" type="describe">
<col | ecti on nane="ngppdenn" >

<di spl ayl tem | ang="en" nanme="nane" >gr eenst one ngpp deno

</ di spl ayl tene

<di splayltem | ang="en" nane="description">This is a
denmonstration collection for the G eenstone digita
library software. It contains a snall subset (11 books)
of the Humanity Devel opnent Library. It is built with
mgpp. </ di spl ayl tenmp

<di spl ayltem | ang="en" name="i con" >ngppdeno. gi f </ di spl ayl t en»

<servi celLi st>
<servi ce nane="Document StructureRetrieve" type="retrieve" />
<servi ce name="Docunent Met adat aRetrieve" type="retrieve" />
<servi ce nane="Docunent Content Retri eve" type="retrieve" />
<servi ce nane="C assifi erBrowse" type="browse" />
<servi ce name="Cl assi fi er BrowseMet adat aRet ri eve'

type="retrieve" />

<servi ce nane="Text Query" type="query" />
<servi ce name="Fi el dQuery" type="query" />
<servi ce nane="AdvancedFi el dQuery" type="query" />
<servi ce nane="Phi ndAppl et" type="applet" />

</ servi celLi st >

<net adat aLi st >

<net adat a name="cr eat or">gr eenst one@s. wai kat o. ac. nz</ net adat a>

<nmet adat a nanme="nunDocs" >11</ net adat a>
<net adat a name="bui | dType" >ngpp</ et adat a>

<net adat a name="htt pPat h">htt p://kanuka: 8090/ gr eenst one3/ si t es/
| ocal site/coll ect/ ngppdeno</ net adat a>

</ met adat aLi st >
</col |l ection>
</ response>

Subset options for a collection or serviceCluster inclueleadat aLi st , ser vi celLi st ,

anddi spl ayl t enli st .

This collection provides many typical services. Notice Hbwg response lists
the services available, while the collection configuratide for this collection
(Figure 5) described serviceRacks. Once the service raaks been configured,
they become transparent in the system, and only servicesfareed to. There are
three document retrieval services, for structural infatior metadata, and con-
tent. The Classifier services retrieve classification stmecand metadata. These
five services were all provided by the GS2MGPPRetrieve SeRack. The three
query services were provided by GS2MGPPSearch serviceRacdkprovide dif-
ferent kinds of query interface. The last service, Phindapps provided by the
PhindPhraseBrowse serviceRack and is an applet service.

A descri be request sent to a service returns a list of parameters thatttvice
accepts and some display information, (and in future magrdesthe content type
for the request and response). Subset options for the reouebsde par anli st
anddi spl ayl t enLi st .

Parameters can be in the following formats:

37

<param nane=’ xxx' type='integer|bool ean|string|invisible default="yyy />
<param nanme=' xxx’ type='enumsinglelenumnulti’ default="aa' />
<option name='aa'/><option name='bb'/>. ..
</ par anp
<par am name=' xxx’ type="multi’ occurs='4">
<param.../>
<param.../>
</ par anp

If no default is specified, the parameter is assumed to be ataryd Here are
some examples of parameters:

<par am name=’ case’ type=’bool ean’ default="0"/>
<par am name=" maxDocs’ type='integer’ default=50"/>

<param nane="index’ type='enunm default="dtx’ >
<option name="dtx’ />
<option name='stt’/>
<option name='stx’/>

<par anp

<I-- this one is for the text box and field list for the
sinple field query-->
<param name="si npl eField type="multi’ occurs="4" >
<param nanme='fqv' type='string />
<param name=’'fqgf’ type='enum singl e >
<option nane='TI’/><option nane=" AU /><option name="OR />
</ par anp
</ par anp

The type attribute is used to determine how to display tharpaters on a web
page or interface. For example, a string parameter maytrigsaltext entry box,
a boolean an on/off button, enusingle/enuramulti a drop-down menu, where
one or many items, respectively, can be selected. A mu-fyarameter indicates
that two or more parameters are associated, and shouldiayid appropriately.
For example, in a field query, the text box and field list shdaddassociated. The
occurs attribute specifies how many times the parametetdbewdisplayed on the
page. Parameters also come with display information: altéht strings needed to
present them to the user. These include the name of the piaamel the display
values for any options. These are included in the above peisrdescriptions in
the form of<di spl ay! t en» elements.

A service description also contains some display inforametithis includes
the name of the service, and the text for the submit button.

Here is a sample describe request to the FieldQuery serfmalection mgp-
pdemo, along with its response. The parameters in this eleaimglude their dis-
play information. Figure 9 shows an example HTML search fohat may be
generated from this describe response.

<request | ang="en" to="ngppdeno/Fi el dQuery" type="describe" />

38

<response fron="ngppdeno/ Fi el dQuery" type="descri be">
<servi ce name="Fi el dQuery" type="query">
<di spl ayl t em name="nane" >For m Quer y</ di spl ayl t em>
<di spl ayl t em nane="subni t " >Sear ch</ di spl ayl t en»
<par amnlLi st >
<par am def aul t =" Doc" nane="|evel " type="enum si ngl e">
<di spl ayl tem nane="nane">G anul arity to search at</displaylten>
<opti on name="Doc" >
<di spl ayl t em nane="nane" >Docunent </ di spl ayl t enr>
</ option>
<option name="Sec" >
<di spl ayl t em nane="nane" >Sect i on</ di spl ayl t en>
</ option>
<opti on nane="Para">
<di spl ayl t em nane="nane" >Par agr aph</ di spl ayl t en>
</ option>
</ par an®
<par am def aul t =" 1" nane="case" type="bool ean">
<di spl ayl t em nane="nane">Turn casefol di ng </di spl ayl tenmp
<opti on nane="0">
<di spl ayl t em nane="name" >of f </ di spl ayl ten»
</ option>
<option nane="1">
<di spl ayl t em nane="nane" >on</ di spl ayl t en>
</ option>
</ par an®
<param def aul t ="1" nane="stenli type="bool ean">
<di spl ayl tem nane="nane">Turn stenmi ng </di spl ayltenr
<opti on nane="0">
<di spl ayl t em nane="name" >of f </ di spl ayl ten»
</ option>
<option nane="1">
<di spl ayl t em nane="nane" >on</ di spl ayl t en>
</ option>
</ par an®
<par am def aul t =" 10" name="nmaxDocs" type="i nteger">
<di spl ayl t em name="nane" >Maxi nrum docunents to return
</ di splayltenm>
</ par an®
<par am nanme="si npl eFi el d" occurs="4" type="multi">
<di spl ayl t em nanme="nane" ></ di spl ayl t enr
<param name="fqv" type="string">
<di spl ayl t em name="nane">Wrd or phrase </displayltenr
</ par an®
<par am def aul t =" ZZ" name="fqgf" type="enum single">
<di spl ayl tem name="nane">i n fiel d</di spl ayltenr
<option nane="ZzZzZ">
<di spl ayl t em nane="nane">al | fi el ds</ di spl ayl t en>
</ option>
<option nane="TX">
<di spl ayl t em nane="nane" >t ext </ di spl ayl t en>
</ option>
<option nane="TI">

39

Form Query

Granularity to search at I Section ¥|

Turn casefolding | on x|
Turn sternrning I an x|
Iaximum decuments to refurn |1 0
Search for in field

| [Allfields =]

|
I TextOnly
!

Suhject
Search |

Title

Figure 9: The previous query service describe responsesptagied on the search
page.

<di spl ayl t em nane="nane">Ti t| e</ di spl ayl t en>
</ option>
<option name="SU'>
<di spl ayl t em nane="nane" >Subj ect </ di spl ayl ten®
</ option>
<option name="ORG'>
<di spl ayl t em nane="name" >Or gani zat i on</ di spl ayl ten>
</ option>
<option name="SO'>
<di spl ayl t em nane="nane" >Sour ce</ di spl ayl t en>
</ option>
</ par an®
</ par an®
</ par aniLi st >
</ service>
</ response>

A describe request to an applet type service returns theap@ML element:
this will be embedded into a web page to run the applet.

<request type='describe’ to=" ngppdeno/ Phi ndApplet’/>

<response type='describe’ >
<servi ce nane=' Phi ndAppl et’ type='query’ >
<appl et ARCHI VE=' phind.jar, xerceslnpl.jar, gsdl3.jar,
jaxp.jar, xm-apis.jar’
CODE=’ or g. gr eenst one. appl et. phi nd. Phi nd. cl ass’
CODEBASE=' | i b/ j ava’
HEl GHT=" 400’ W DTH=" 500’ >
<PARAM NAME=' | i brary’ VALUE="'/>
<PARAM NAME=’ phi ndcgi ' VALUE=' ?a=a&anp; sa=r &np; sn=Phi nd’ / >

40

<PARAM NAME=’ col | ection’ VALUE=' ngppdeno’ />
<PARAM NAME=' cl assifier’ VALUE="1" />
<PARAM NAME=' ori entation’ VALUE='vertical’ />
<PARAM NAME=' depth’ VALUE='2' [>
<PARAM NAME='resul torder’ VALUE='L,|,E e, D/d />
<PARAM NAME=' backdr op’ VALUE='interfaces/default/>
i mges/ phi ndbgl.jpg’ />
<PARAM NAME=' f ont si ze’ VALUE=' 10’ />
<PARAM NAME=' bl ocksi ze’ VALUE=' 10" />
The Phind java appl et.
</ appl et >
<di spl ayl t em nane="nane" >Br owse phrase hierarchi es</di spl ayltenr
</ service>
</ response>

Note that the library parameter has been left blank. Thiseisahse library
refers to the current servlet that is running and the nametisiecessarily known
in advance. So either the applet action or the Receptionist fill in this parameter
before displaying the HTML.

3.5 ’system’-type messages

“System” requests are used to tell a MessageRouter, Colteot ServiceCluster
to update its cached information and activate or deactiettter modules. For
example, the MessageRouter has a set of Collection mochdéed tan talk to. It
also holds some XML information about those collectionsis-th returned when
a request for a collection list comes in. If a collection isetied or modified, or
a new one created, this information may need to change, anlistiof available
modules may also change. Currently these requests agéuitby particular CGI
requests (see Section 1.7).
The basic format of a system request is as follows:

<request type='system to="'>
<system.../>
</ request >

One or more actual requests are specified in system elemBemésfollowing
are examples:

<system type='configure’ subset="'/>

<system type='configure’ subset='collectionList’/>

<system type='activate’ nodul eType='collection’ nodul eNanme=" denpo’ />
<system type='deactivate’ nodul eType='site’ nodul eNane="sitel />

The first request reconfigures the whole site—the MessageRgoes through
its whole configure process again. The second request pestfigures the collectionList—
the MessageRouter will delete all its collection inforroati and re-look through
the collect directory and reload all the collections agalie third request is to
activate collection demo. This could be a new collectiora mgactivation of an old

41

one. If a collection module already exists, it will be detkétand a new one loaded.
The final request deactivates the site sitel—this remowesité from the siteList
and module map, and also removes any of that sites colletservices from the
static lists.

A response just contains a status mes3aige example:

<st at us>MessageRout er reconfi gured successful | y</stat us>
<status>Error on reconfiguring collectionList</status>
<status>col | ecti on: denp acti vat ed</ st at us>
<status>site:sitel deactivated</status>

System requests are mainly answered by the MessageRouereviEr, Col-
lections and ServiceClusters will respond to a subset aiethequests.

3.6 ’'format-type messages

Collection designers are able to specify how their coltettiooks to a certain
degree. They can specify format statements for displaywihieapply to the results
of a search, the display of a document, entries in a clasificdierarchy, for
example. This info is generally service specific. All seegaespond to a format
request, where they return any service specific formattirfigrination. A typical
request and response looks like this:

<request | ang="en" to="ngppdeno/Fi el dQuery" type="format" />

<response fron="ngppdeno/ Fi el dQuery" type="format">
<f or mat >
<gsf:tenpl ate nat ch="document Node" ><t d><gsf: | i nk>
<gsf:nmetadata name="Title" />(<gsf: nmetadata nane="Source" />)
</ gsf:link></td>
</ gsf:tenpl at e>
</ f or mat >
</ response>

The actual format statements are described in Section hdy @&re templates
written directly in XSLT, or in GSF (GreenStone Format) whis a simple XML
representation of the more complicated XSLT templates. -Gigle format state-
ments need to be converted to proper XSLT. This is currerdlyecby the Recep-
tionist (but may be moved to an ActionHelper): the format XMliransformed to
XSLT using XSLT with the configormat.xsl stylesheet.

3.7 ’status’-type messages

These are only used with process-type services, which asetWwhere a request is
sent to start some type of process (see Section 3.8.4). Aaliipirocess’ request

to a 'process’ service generates a response which statebevhbe process had
successfully started, and whether its still continuingh# process is not finished,

5TODO: add in error/status codes

42

Table 7: Status codes currently used in Greenstone3

code name code meaning
value
SUCCESS 1 the request was accepted, and the process wagtainpl
ACCEPTED 2 the request was accepted, and the process hastheed, but
it is not completed yet
ERROR 3 there was an error and the process was stopped

CONTINUING 10 the process is still continuing

COMPLETED 11 the process has finished

HALTED 12 the process has stopped

INFO 20 just an info message that doesn’t imply anything

status requests can be sent repeatedly to the service tih@aitlatus, using the pid
to identify the process. Status codes are used to identfgtite of a process. The
values used at the moment are listed in TalSle 7

The following shows an example status request, along withresponses, the
first a 'OK but continuing’ response, and the second a 'sigfallg completed’
response. The content of the status elements in the twonsspads the output
from the process since the last status update was sent back.

<request |ang="en" to="build/InportCollection" type="status">
<par anii st >
<par am nanme="pi d" val ue="2" />
</ par anii st >
</ request >

<response fron¥"build/ I nmportCollection">
<status code="2" pid="2">Col | ection construction: inport collection.

conmand = inport.pl -collectdir /research/kjdon/hone/greenstone3/ web/sites/
| ocal site/collect testl
starting
</ status>

</ response>

<response fron¥"build/ I nmportCollection">

<status code="11" pi d="2">RecPlug: getting directory
/ resear ch/ kj don/ horre/ gr eenst one3/ web/ sites/ | ocal site/collect/testl/inport
WARNI NG - no plugin could process /. keepme

R R O S R

I nport Conpl ete
EEEEE R EEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEERE]
* 1 document was considered for processing
* 0 were processed and included in the collection
* 1 was rejected. See /research/kjdon/ home/ greenst one3/ web/ sites/
| ocal site/collect/testl/etc/fail.log for a list of rejected docunents

Success

</ status>
</ response>

A more standard set of codes should probably be used, forgieathe HTTP codes

43

3.8 ’'process’-type messages

Process requests and responses provide the major furlittioofathe system—
these are the ones that do the actual work. The format deenie service they
are for, so I'll describe these by service.

Query type services TextQuery, FieldQuery, AdvancedRelery (GS2MGSearch,
GS2MGPPSearch), TextQuery (LuceneSearch) The main typeqoksts in the
system are for services. There are different types of sesyicurrently:query,
browse, retrieve, process, appl et, enrich. Query services do some kind of
search and return a list of document identifiers. Retrieveices can return the
content of those documents, metadata about the documentshey resources.
Browse is for browsing lists or hierarchies of documentficess type services are
those where the request is for a command to be run. A stateswilidbe returned
immediately, and then if the command has not finished, antepefdhe status can
be requested. Applet services are those that run an appteichEservices take a
document and return the document with some extra markupdadde

Other possibilities include transform, extract, accrefbese types of service
generally enhance the functionality of the first set. They i@ used during col-
lection formation: 'accrete’ documents by adding them tokection, 'transform’
the documents into a different format, 'extract’ infornmattior acronyms from the
documents, ’enrich’ those documents with the informatistreeted or by adding
new information. They may also be used during queryingnifarm’ a query be-
fore using it to query a collection, or 'transform’ the doceints you get back into
an appropriate form.

The basic structure of a service 'process’ request is agvistl

<request |l ang="en’ type=' process’ to='denpo/ TextQuery’ >
<paranii st/ >
ot her el enents. ..

</ request >

The parameters are hame-value pairs corresponding to pteesrthat were
specified in the service description sent in response to@itesequest.

<par am name=’' case’ value="1"/>
<par am nanme=" naxDocs’ val ue="34"/>
<param nane='index’ value="dtx' />

Some requests have other content—for document retridaralwiould be a list
of document identifiers to retrieve. For metadata retrietrad content is the list of
documents to retrieve metadata for.

Responses vary depending on the type of request. The foljpsgctions look
at the process type requests and responses for each typwioése

44

3.8.1 ’query’-type services

Responses to query requests contain a list of documentfidesitalong with some
other information, dependent on the query type. For a tegtyguhis includes term
frequency information, and some metadata about the reBolt.instance, a text
guery on 'snail farming’, with the parameter 'maxDocs=10ght return the first
10 documents, and one of the query metadata items would hletdienumber of
documents that matched the quéry.

The following shows an example query request and its regons

Find at most 10 Sections in the mgppdemo collection, coimgithe word
snail (stemmed), returning the results in ranked order:

<request |l ang="en’ to="ngppdeno/ Text Query" type="process">
<par anii st >
<par am narme="naxDocs" val ue="10"/>
<par am nane="querylLevel " val ue="Section"/>
<par am nane="steni' val ue="1"/>
<par am nare="nmat chMbde" val ue="sone"/>
<par am nane="sort By" val ue="1"/>
<par am nane="i ndex" val ue="t0"/>
<par am nane="case" val ue="0"/>
<par am nane="query" val ue="snail"/>
</ par aniLi st >
</ request >

<response frone"ngppdeno/ Text Query" type="process">
<net adat aLi st >
<net adat a name="nunDocsMat ched" val ue="59" />
</ net adat aLi st >
<docunent NodeLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d. 4. 2"
docType=' hi erarchy’ nodeType="leaf" />
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12"
docType=' hi erarchy’ nodeType="leaf" />
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 1"
docType=' hi erarchy’ nodeType="interior" />
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d. 2. 2"
docType=" hi erarchy’ nodeType="leaf" />

</ docunent NodelLi st >
<ternlist>

<termfield="" freg="454" nanme="snail" nunDocsMat ch="58" stem="3">
<equi vTernLi st >
<termfreq="" nanme="Snail" numDocsMatch="" />
<termfreq="" name="snail" numDocsMatch="" />
<termfreq="" nane="Snails" numDocshMatch="" />
<termfreq="" name="snail s" nunDocsMat ch="" />
</ equi vTerni st >
</ternp

</ternlist>
</ response>

"no metadata about the query result is returned yet.

45

The list of document identifiers includes some informatidmowt document
type and node type. Currently, document types inckidel e, paged andhi er ar chy.
si npl e is for single section documents, i.e. ones with no sub-&iracpaged is
documents that have a single list of sections, whiler ar chy type documents
have a hierarchy of nested sections. baged andhi er ar chy type documents,
the node type identifies whether a section is the root of tloenck@nt, an internal
section, or a leaf.

The term list identifies, for each term in the query, what regfiency in the
collection is, how many documents contained that term, did af its equivalent
terms (if stemming or casefolding was used).

3.8.2 ’browse’-type services

Browse type services are used for classification browsirige rEquest consists of
a list of classifier identifiers, and some structure pararsdisting what structure
to retrieve.

<request | ang="en" to="ngppdeno/d assifierBrowse" type="process">
<par anii st >
<par am nanme="structure" val ue="ancestors" />
<param name="structure" val ue="children" />
</ par aniLi st >
<cl assi fi er NodelLi st >
<cl assi fi er Node nodel D="CL1.2" />
</ cl assi fi er NodeLi st >
</ request >

<response frone"ngppdeno/ C assifierBrowse" type="process">
<cl assi fi er NodeLi st >
<cl assi fi er Node nodel D="CL1">
<nodeSt ruct ur e>
<cl assi fi er Node nodel D="CL1" >
<cl assi fi er Node nodel D="CL1. 2">
<cl assi fi erNode nodel D="CL1.2.1" />
<cl assi fi er Node nodel D="CL1.2.2" />
<cl assi fi erNode nodel D="CL1.2.3" />
<cl assi fi er Node nodel D="CL1.2.4" />
<cl assi fi er Node nodel D="CL1.2.5" />
</ cl assi fi er Node>
</ cl assi fi er Node>
</ nodeSt ruct ure>
</ cl assi fi er Node>
</ cl assi fi er NodelLi st >
</ response>

Possible values for structure parameters @areest ors, parent, si bl i ngs,
chi I dren, descendants. The response gives, for each identifier in the request,
a <nodeSt ruct ur e> element with all the requested structure put together into a
hierarchy. The structure may include classifier and documedes.

46

3.8.3 ’retrieve’-type services

Retrieval services are special in that requests are notogipinitiated by a user
from a form on a web page, but are called from actions in resptm other things.
This means that their names are hard-coded into the Acti@osumentContentRe-
trieve, DocumentStructureRetrieve and DocumentMet&izttieve are the stan-
dard names for retrieval services for content, structund,raetadata of documents.
Requests to each of these include a list of document idestifBicause these gen-
erally refer to parts of documents, the elements are cadedunent Node>. For
the content, that is all that is required. For the metadatieval service, the re-
guest also needs parameters specifying what metadatauseagq For structure
retrieval services, requests need parameters specifyiray structure or structural
info is required.

Some example requests and responses follow.

Give me the Title metadata for these documents:

<request | ang="en" to="ngppdeno/ Docunent Met adat aRetri eve" type="process">
<par anii st >
<param nanme="net adata" value="Title" />
</ par aniLi st >
<docunent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2"/>
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12"/ >
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 1"/ >

</ docunent NodelLi st >
</ request >

<response fron="ngppdeno/ Docunment Met adat aRetri eve" type="process">
<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" >
<net adat aLi st >
<net adata name="Titl e">Putting snails in your second pen</netadata>
</ met adat aLi st >
</ docunent Node>
<docunent Node nodel D="HASH010f 073f 22033181e206d3b7. 2. 12" >
<net adat aLi st >
<net adata name="Titl e">Now you nust deci de</ net adat a>
</ met adat alLi st >
</ docunent Node>
<docurent Node nodel D="HASH010f 073f 22033181e206d3b7. 1" >
<net adat aLi st >
<nmet adata name="Ti tl e" >l ntroducti on</ net adat a>
</ nmet adat alLi st >
</ docunent Node>
</ docunent NodelLi st >
</ response>

One or more parameters specifying metadata may be includedréquest.
Also, a metadata value af | will retrieve all the metadata for each document.

47

Any browse-type service must also implement a metadatevatrservice to
provide metadata for the nodes in the classification hiesarthe name of it is the
browse service name plust adat aRet ri eve. For example, the ClassifierBrowse
service described in the previous section should also h&lassifierBrowseMeta-
dataRetrieve service. The request and response formaaddlgxhe same as for
the DocumentMetadataRetrieve service, exceptitaiunent Node> elements are
replaced by<cl assi fi er Node> elements (and the corresponding list element is

also changed).
Give me the text (content) of this document:

<request | ang="en" to="ngppdeno/ Docunent ContentRetri eve" type="process">

<paraniist />
<docurent NodelLi st >

<docurent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4.2" />

</ docunent NodelLi st >
</ request >

<response frone"ngppdeno/ Docunent Cont ent Retri eve" type="process">

<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" >

<nodeCont ent >&l t ; Secti on> ;

&l t;/B> & t; P ALI G\N=" ; JUSTI FY" ; > ; &l t; / P> ;
& t; P ALl GN=" ; JUSTI FY" ; > ; 190. When the plants in
your second pen have grown big enough to provide food and

shelter, you can put in the snails.&t;/P>
</ nodeCont ent >
</ docunent Node>
</ docunent NodelLi st >
</ response>

The content of a node is returned irk@deCont ent > element. In this case it

is escaped HTML.

Give me the ancestors and children of the specified nodeg alith the num-

ber of siblings it has:

<request | ang="en" to="ngppdeno/ Docunent StructureRetrieve"
<par amnlLi st >
<param nanme="structure" val ue="ancestors" />
<par am nane="structure" val ue="children" />
<param nanme="i nfo" val ue="nunsi bl i ngs" />
</ par anii st >
<docunent NodeLi st >

type="process">

<docurrent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" />

</ docunent NodelLi st >
</ request >

<response fron="ngppdeno/ Docunent StructureRetrieve" type="process">

<docurent NodelLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2" >
<nodeSt ruct ur el nf o>
<i nf o name="nun6i bl i ngs" val ue="2" />
</ nodeSt ruct ur el nf o>

48

<nodeSt ruct ur e>
<docurent Node nodel D="HASHac0a04dd14571c60d7f bf d"
docType=" hi erarchy’ nodeType="root">
<docurent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4"
docType=' hi erarchy’ nodeType="interior">
<docurnent Node nodel D="HASHac0a04dd14571c60d7f bfd. 4. 2"
docType=' hi erarchy’ nodeType="leaf" />
</ docunent Node>
</ docunent Node>
</ nodeSt ruct ur e>
</ docunent Node>
</ docunent NodelLi st >
</ response>

Structure is returned inside<aodest r uct ur e> element, while structural info
is returned in anodesSt r uct ur el nf 0> element. Possible values for structure pa-
rameters are as for browse servicesicest ors, parent, siblings, children,
descendant s, enti re. Possible values for info parameters awesi bl i ngs, si bl i ngPosi ti on,
nunChi | dren.

3.8.4 ’process’-type services

Requests to process-type services are not requests forthedy request some
action to be carried out, for example, create a new collactoimport a collection.
The response is a status or an error message. The import éatddnmands may
take a long time to complete, so a response is sent back aftecassful start to
the command. The status may be polled by the requester tasethh process is
going.

Process requests generally contain just a parameter list. for any service,
the parameters used by a process-type service can be abkgimedescribe request
to that service.

Here are two example requests for process-services thataatref the build
service cluster (hence the addresses all begin with "Byildllowed by an exam-
ple response:

<request |ang="en’ type='process’ to=buil d/ NewColl ection’ >
<par anii st >
<param nanme=’' creator’ val ue=" ne@one. com />
<par am nane=’ col | Nane’ val ue='the deno collection'/>
<par am nane=’ col | Short Nane’ val ue=" deno’ />
</ paramist>
</ request >

<request |ang="en’ type='process’ to='build/IlnportCollection’ >
<par anii st >
<par am nane=' col | ecti on’ val ue='deno’ />
</ paramist>
</ request >

<response fron¥"build/ I nmportCollection">

49

<status code="2" pid="2">Starting process...</status>
</ response>

The code attribute in the response specifies whether the command d&s b
successfully stated, whether its still going, etc (see &ablor a list of currently
used codes). The pid attribute specifies a process id nuindiecdn be used when
guerying the status of this process. The content of thes&lament is (currently)
just the output from the process so far. Status messageshwiére described
in Section 3.7, are used to find out how the process is goingjwdrether it has
finished or not.

3.8.5 ’applet’-type services

Applet-type services are those that process the data fg@lata A request consists
only of a list of parameters, and the response containsagpi et Dat a> element
that contains the XML data to be returned to the applet. Thedb of this is
entirely specific to the applet—there is no set format to {h@et data.

Here is an example request and response, used by the Phiett app

<request type='query’ to=" ngppdeno/Phi ndApplet’ >
<par anii st >
<param nane=' pc’ value="1'/>
<par am name=" pptext’ value="health' />
<param nane=' pfe’ value="0"/>
<param nane=' pl e’ val ue="10"/>
<param nane='pfd value="0"/>
<param nane=' pl d’ val ue=" 10" />
<param nane=' pfl’ value="0"/>
<param name='pl |’ val ue="10"/>
</ par aniLi st >
</ request >

<response type='query’ from=' ngppdeno/ Phi ndAppl et’ >
<appl et Dat a>
<phi ndData df="9" ef="46" id="933" |f=15" tf="296" >
<expansi onLi st end="10" length="46" start="0 >
<expansion df="4" id="8880" nunr’' 0 tf="59 >
<suf fi x> CARE</suffix>
</ expansi on>

</ expansi onLi st >
<docurnent Li st end="10" length="9 start="0 >
<docunent freq='78 hash=" HASH4632a8a51d33c47a75c559" nume’ 0’ >
<title>The Courier - N??159 - Sept- COct 1996 Dossier |nvesting
in People Country Reports: Mali ; Wstern Sanpa
</title>
</ docunent >

</ docunent Li st >

<t hesaurusLi st end="10" length="15 start="0" >
<t hesaurus df="7" id=" 12387 tf="15" type= RT >

50

<phr ase>PUBLI C HEALTH</ phr ase>
</thesaurus>. ..
</t hesauruslLi st >
</ phi ndDat a>
</ appl et Dat a>
</ response>

3.8.6 ’enrich’-type services

Enrich services typically take some text of documents di@sinodeCont ent >
tags) and returns the text marked up in some way. One exanfiif@sois the
GatePOSTag service: this identifies Dates, Locations, IPeopul Organizations
in the text, and annotates the text with the labels. In thievidhg example, the
request is for Location and Dates to be identified.

<request | ang="en" to="CGat ePOSTag" type="process">
<par anii st >
<par am nane="annot ati onType" val ue="Dat e, Locati on" />
</ par anii st >
<docunent Nodeli st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d" >
<nodeCont ent >
FOOD AND AGRI CULTURE ORGANI ZATI ON OF THE UNI TED NATI ONS
Rone 1986
P- 69
I SBN 92-5-102397-2
FAO 1986
</ nodeCont ent >
</ docunent Node>
</ docunent NodelLi st >
</ request >

<response fronr"Gat ePOSTag" type="process">
<docunent NodeLi st >
<docunent Node nodel D="HASHac0a04dd14571c60d7f bf d" >
<nodeCont ent >
FOOD AND AGRI CULTURE ORGANI ZATI ON OF THE UNI TED NATI ONS
<annot ation type="Locati on">Rone</annot ati on>
<annot ation type="Date">1986</annot ati on>
P- 69
I SBN 92-5-102397-2
FAO <annot ati on type="Dat e">1986</ annot ati on>
</ nodeCont ent >
</ docunent Node>
</ docunent NodelLi st >
</ response>

3.9 Page generation

A 'page’ is some XML or HTML (or other?) data returned in resge to an ex-
ternal 'page’-type request. These requests originate fsatside Greenstone , for

51

example from a servlet, or Java application, and are redddethe Reception-
ist. As described below in Section 3.9.1, the requests aré X@gresentations of
Greenstone URLs. One of the arguments is action (a). THsstted Receptionist
which Action module to pass the request to.

Action modules decode the rest of the arguments to determivad requests
need to be made to the system. One or more internal requegtbamaade to the
MessageRouter. A request for format information from théi€@tion/Service may
also be made. The resulting data is gathered together intmlke XML response,
<page>, and returned to the Receptionist.

The page format is described in Section 3.9.2. The XML mayeh#ned as is,
or may be modified by the Receptionist. The various Receigt®are described in
Section 3.9.3. The default receptionist used by a sendesforms the XML into
HTML using XSL stylesheets. Section 3.9.4 looks at coltatspecific formatting,
in particular for HTML output. Sections 3.9.6 to 3.9.12 |aatkthe various actions
and what kind of data they gather.

3.9.1 ‘’page’-type requests and their arguments

These are requests for a 'page’ of data—for example, the hrage for a site; the
query page for a collection; the text of a document. Theyaionin XML, a list
of arguments specifying what type of page is required. Ifékt=rnal context is
a servlet, the arguments represent the 'CGI’ arguments irear@dtone URL. The
two main arguments are (action) andsa (subaction). All other arguments are
encoded as parameters.

Here are some examples of requésts

<request type='page’ action='p’ subaction=" about’
lang="fr’ output="htm’>
<par anii st >
<param nane='c¢’ val ue='denon’ />

</ par anii st >

</ request >

<request type='page’ action='q’

<par anii st >
<param narme="s’ val ue=' Text Query’ />
<param nane='c¢’ val ue='deno’ />
<param nanme="rt’ value="r'/>

lang="en’ output="htm’ >

<l-- the rest are the service specific parans -->
<param nane='ca' value="0"/> <!-- casefold -->
<param name="st’ value="1"/> <l-- stem-->

<param narme="m value="10'/> <!-- nmaxdocs -->

<param name='q’ value='snail’'/> <l-- query string -->

</ par aniLi st >
</ request >

8In a servlet context, these correspond to the argunenp&sa=about & =deno&l =fr,and
a=q& =en&s=Text Quer y&c=denné&rt =r & a=08&st =1&m=10&g=snai | .

52

Argument Meaning Typical values

a action a (applet), q (query), b (browse), p (page), pr @ssr
s (system)
sa subaction home, about (page action)
c collection or demo, build
service cluster
S service name TextQuery, ImportCollection
rt request type d (display), r (request), s (status)
ro response only O or1-if setto one, the request is carri¢d ou

but no processing of the results is done
currently only used in process actions

o] output type XML, HTML, WML

| language en, fr, zh ...

d document id HASHxxx

r resource id ??7?

pid process handle an integer identifying a particular pssaequest

Table 8: Generic arguments that can appear in a Greenstohe UR

There are some standard arguments used in Greenstone ggrateérdescribed
in Table 8. These are used by Receptionists and Actions. T3Ra@ms class
specifies all the general basic arguments, and whether bmydsbe saved or not
(Some arguments need to be saved during a session, and ¢his teebe imple-
mented outside Greenstone proper — currently we do this enstrvlet, using
servlet session handling). The servlet has an init paranpatens cl ass which
specifies which params class to use: GSParams can be seddfasscessary. The
Receptionist and Actions must not have conflicting argumeamtes.

Other arguments are used dynamically and come from the @&arviService
arguments must always be saved during a session. Servigesentaeated by dif-
ferent people, and may reside on a different site. There iguamantee that there
is no conflict with argument names between services andrectidherefore ser-
vice parameters are namespaced when they are put on thewlsgreas interface
(receptionist and action) parameters have no namespaae dé&fhult namespace
is s1 (servicel) — any parameters that are for the servidebeiprefixed by this.
For example, the case parameter for a search will be put ipdige as sl.case,
and the resulting argument in a search URL will be s1.caseeVctions are de-
ciding which parameters need to be sent in a request to acsetiiey can use the
namespace information.

If there are two or more services combined on a page with desisigbmit
button, they will use namespaces s1, s2, s3 etc as needed (Jdreice) parameter
will end up with a list of services. For examplke;Text Query, Musi cQuery, and
the order of these determines the mapping order of the naanespi.e. sl will
map to TextQuery, s2 to MusicQuery.

3.9.2 page format

The basic page format is:

53

<page | ang='en’ >
<pageRequest />
<pageResponse/ >
</ page>

* show configuration and describe whats its used for

There are two main elements in the page: pageRequest, pgmide. The
pageRequest is the original request that came into the Rewoigp—this is in-
cluded so that any parameters can be preset to their prevabuss, for example,
the query options on the query form. The pageResponse osrddithe data that
has been gathered from the system by the action. The otheelemoents con-
tain extra information needed by XSLT. Config contains rmmet variables such
as the location of the gsdl home directory, the current sitee, the name of the
executable that is running (e.g. library)—these are nee¢dedlow the XSLT to
generate correct HTML URLSs. Display contains some of thés&ings needed in
the interface—these are separate from the XSLT to allowrf@rhationalization.

The following subsections outline, for each action, whatida needed and
what requests are generated to send to the system.

Once the XML page has been put together, the page to retutmetoder is
created by transforming the XML using XSLT. The output is HI skt this stage,
but it will be possible to generate alternative outputs,hsas XML, WML etc.
A set of XSLT files defines an ’interface’. Different users adrange the look
of their web pages by creating new XSLT files for a new 'integfa Just as we
have a sites directory where different sites ’live’ (ie wééhneir configuration file
and collections are located), we have an interfaces dineathere the different
interfaces ’live’ (ie their transforms and images are lecathere). The default
XSLT files are located in interfaces/default/transformsli€ttions, sites and other
interfaces can override these files by having their own cdplgeappropriate files.
New interfaces have their own directory inside interfac&stes and collections can
have a transform directory containing XSLT files. The ordemihich the XSLT
files are looked for is collection, site, current interfadefault interfacé. [TODO:
describe a bit more?? currently only can get this locally]

3.9.3 Receptionists

The receptionist is the controlling module for the page gatien part of Green-
stone . It has the job of loading up all the actions, and it khalout the message
router it and the actions are supposed to talk to. It routessages received to the
appropriate action (page-type messages) or directly tonéesage router (all other
types). Receptionists also do other things, for exampldingdo the page received
back from the action any information that is common to allgsg

There are different ways of providing an interface to Greems , from web
based CGI style (using servlets) to Java GUI applicationses€ different inter-

%this currently breaks down for remote sites - need to rethiakbit.

54

faces require slightly different responses from a receydio so we provide several
standard types of receptionist.

Receptionist: This is the most basic receptionist. The laggurns consists
of the original request, and the response from the actionat sent to. Meth-
ods preProcessRequest, and postProcessPage are calles request and page,
respectively, but in this basic receptionist, they don’tadgthing.

TransformingReceptionist: This extends Receptionisd, arerwrites postPro-
cessPage to transform the page using XSLT. An XSLT is listecthch action in
the receptionists configuration file, and this is used tosf@m the page. First,
some display information, and configuration informationagded to the page.
Then it is transformed using the specified XSLT for the agtaomd returned.

WebReceptionist: The WebReceptionist extends TransfagReceptionist. It
doesn’t do much else except some argument conversion. TotkedJRLS short,
parameters from the services are given shortnames, anel éihesised in the web
pages.

DefaultReceptionist: This extends WebReceptionist, aride default one for
Greenstone3 servlets. Due to the page design, some extranation is needed
for each page: some metadata about the current collectioa rdceptionist sends
a describe request to the collection to get this, and appietdghe page before
transformation using XSLT.

By default, the LibraryServlet uses DefaultReceptionidbwever, there is a
servlet init-param calledecept i oni st which can be set to make the servlet use a
different one.

3.9.4 Collection specific formatting

get format info, transform gsf-¢ xsl. transform xml-¢html
configuration params are passed in to the transformation

3.9.5 CGIl arguments
3.9.6 Page action

PageAction is responsible for displaying kinds of inforimatpages, such as the
home page of the library, or the home page of a collectionherhelp and pref-
erences pages. These pages are not associated with spewifies like the other
page types. In general, the data comes from describe requestrious modules.
The different pages are requested using the subaction argunfor the 'home’
page, a 'describe’ request is sent to the MessageRoutes—rdhirns a list of all
the collections, services, serviceClusters and sites kralvout. For each collec-
tion, its metadata is retrieved via a 'describe’ requests Tietadata is added into
the previous result, which is then added into the page. Forahout’ page, a
descri be request is sent to the module that the about page is abositmty be a
collection or a service cluster. This returns a list of matacand a list of services.

55

To get an external html page embedded into a greenstonetotiei.e. a two
frame page, with the top frame containing the collectiordeeand navigation bar,
and the second frame containg the external page, use subadtnl. A url would
look like a=p&sa=html&c=collname&url=axtalurl

3.9.7 Query action

The basic URL isa=q&s=Text Quer y&=denoé& t =d/ r. There are three query ser-
vices which have been implemented: TextQuery, FieldQuargt, AdvancedField-
Query. These are all handled in the same way by query actione&ch page, the
service description is requested from the service of theeaticollection (via a de-
scribe request). This is currently done every time the qpage is displayed, but
should be cached. The description includes a list of thempaiers available for
the query, such as case/stem, max num docs to return, ete teguest type (rt)
parameter is set to d for display, the action only needs alsthe form, and this
is the only request to the service. Otherwise, the submibbutas been pressed,
and a query request to the TextQuery service is sent. Thislh#se parameters
from the URL put into the parameter list. A list of documergmdifiers is returned.
A followup query is sent to the MetadataRetrieve servicehef tollection: the
content includes the list of documents, with a request fonesof their metadata.
Which metadata to retrieve is determined by looking throtghXSLT that will be
used to transform the page. The service description and/gesult are combined
into a page of XML, which is returned to the Receptionist.

3.9.8 Applet action

There are two types of request to the applet actiera & rt=d anda=a & rt=r.
The valuert =d means “display the applet.” Aescri be request is sent to the
service, which returns theappl et > HTML element. The transformation file
appl et . xsI embeds this into the page, and the servlet returns the HTML.

The valuert =r signals a request from the applet. A process request camgain
all the parameters is sent to the applet service. The resnotaims an appletData
element, which contains a single element - this elementisred directly to the
applet, in XML. No transformation is done. Because the Apjtéon doesn't
know or care anything about the applet data, it can work wity @pplet-service
pair.

Note that the applet HTML may need to know the name ofithe ary pro-
gram. However, that name is chosen by the person who irstiddeesoftware and
will not necessarily be “library”. To get around this, thepdgt can put a parameter
called “library” into the applet data with a null value:

<PARAM NAME="| i brary’ VALUE="'/>

When the AppletAction encounters this parameter it ingbgsiame of the current
library servlet as its value.

56

3.9.9 Document action

DocumentAction is responsible for displaying a documerthiouser. The display
might involve some metadata and/or text for a document drgsa document. For
hierarchical documents, a table of contents may be showite ¥dn paged docu-
ments (those with a single linear list of sections), next previous page buttons
may be shown. These different display types require diffemneformation about
the document. Depending on the arguments, DocumentActithisend requests
to several services: DocumentMetadataRetrieve, DocustreratureRetrieve and
DocumentContentRetrieve.

A basic display, for example, Title and text, involves a rdeta request to
get the Title, and a content request to get the text. Hiereaitlable of contents
display requires a structure request. If the entire costento be displayed, the
parametest r uct ur e=ent i r e would be sent in the request. Otherwise, parameters
struct ure=ancestors,structure=chil drenand possiblyt r uct ur e=si bl i ngs
may be used, depending in the position of the current nodeeiddcument. These
return a hierarchical structure of nodes, containing aioce®des, child nodes and
sibling nodes, respectively. For paged display, the aireds not actually needed.
A structure request is still sent, but this time it requests information, rather
the structure itself. The information requested includesriumber of siblings and
the current position of the current node, or the number ofdodn (if the current
node is the root of the document).

Metadata may be requested for the current node, or for angsiocthe struc-
ture, and content also. The metadata and content are adaethénappropriate
nodes in the structure hierarchy, and this is returned apdbe data.

3.9.10 XML Document action

XMLDocumentAction is a little different to the standard DumaentAction. It op-
erates in two modesgext andt oc. Intext mode, it will retrieve the content of the
current document node using a DocumentContentRetrieweestgint oc mode, it
retrieves the entire table of contents for the documentguaiDocumentStructur-
eRetrieve request. Either mode may also retrieve metadatad current section
or each section in the table of contents.

3.9.11 GS2Browse action

GS2BrowseAction is for displaying Greenstone?2 style df@ss.

3.9.12 System action

SystemAction allows for manual reconfiguration of variousnponents at run-
time. There is no interactive web-page displaying the ostiat merely turns a
set of CGl arguments into an XML system request. The respfyose a system
request is a message which is displayed to the user.

57

Table 9: Configure CGI arguments

arg description

a=s system action

sa=dald type of system request: ¢ (configure), a (add/activate),
d (delete/deactivate)

c=demo the request will go to this collection/serviceaust

instead of the message router
ss=collectionList subset for configure: only reconfigurie fhart.
For the MessageRouter, can be serviceClusterList, sergice
collectionList, siteList.
For a collection/cluster, can be metadatalist or serviseLi
sn=demo
st=collection

3.10 Other code information

Greenstone has a set of Utility classes, which are brieflgride=d in Table 10.

58

Table 10: The utility classes in org.greenstone.gsdlI3.uti

Utility class

Description

CollectionClassLoader

DBInfo

Dictionary
GDBMWrapper
GSConstants
GSEntityResolver
GSFile

GSHTML

GSParams
GS2Params

GSPath
GSStatus
GSXML

GSXSLT
GlobalProperties
MacroResolver

GS2MacroResolver
Misc

MyNodeList

OoID

Processing
SQLQuery

XMLConverter

XMLTransformer
XSLTUMl

ClassLoader that knows about aatidin’s resource directory
Class to hold info from GDBM database entry
wrapper around a Resource Bundle, providingngs with parameters
Wrapper for GDBM database. Uses JavaGDBM
holds some constants used for servlet argsianghtonfiguration variables
an EntityResolver which can be used torsdurces such as DTDs
class to create all Greenstone file paths e.g. usentétel configuration
files, XSLT files and collection data.
provides convenience methods for dealing with HTMLg. making strings
HTML safe
contains names and default values for interfaaepters
a subclass of GSParams which holds defaultesgafiameters too, neces-
sary for the gs2 style interface.
used to create, examine and modify message addtess pa
some static codes for status messages
lots of methods for extracting information out of Gnstone XML, and cre-
ating some common types of elements. Also has static Stfargdement
and attribute names used by Greenstone .
some manipulation functions for Greenstone XSLT
Holds the global properties (from glghalperties)
Used with replace elements in collectionfigaration files, replaces a
macro or string with another string, metadata or text fronictiahary
MacroResolver for GS2 collections, tisas the GDBM database
miscellaneous functions
A simple implementation of an XML NodeList
class to handle Greenstone (2) OIDs
Runs an external process and prints the outputtfre process
contains a connection to a SQL database, alongsaitte methods for ac-
cessing the data, such as converting MG numbers to and fra@anStone
OIDs.
provides methods to create new Documentsep@trings or Files into Doc-
uments, and convert Nodes to Strings
methods to transform XML using XSLT
contains static methods to be called from within XS

4 Developing Greenstone3 : Adding new features

[TODO: finish this section]

4.1 Creating and using new services

There are three parts to adding new services to Greenstaefhing the new
service, specifying that it should be loaded, and using fityou are talking to

Greenstone using the SOAP interface, then the firsttwo paesll that need to
be done. If you are using the Greenstone servlet interfaes you may need to
do work for the third part, depending on what kind of new ses\it is. If you are

adding a service of a type that is already present, for exanaghew query service,
then the query action can just use your new service as isrfasglit is set up in the

59

same way as the standard query services). However, if it saatype of service
that the interface and actions don’t know about, you wilkai¢o add a new action
or modify an existing one so that your service is actuallyduse

4.1.1 Creating the service

You will need to write a new Java class which inherits frong. gr eenst one. gsdl 3. servi ce. Servi ceRack
(or a subclass of this). The class will need to implement astl¢heconfi gure,
process<Ser vi ceNanme>andget Ser vi ceDescri pti on methods. There isa dummy
class calleds/NewSer vi cesTenpl at e. j avain gr eenst one3/ r esour ces/ j ava which
describes these methods and what needs to be done.

Servi ceRack. j ava handles the maipr ocess method. If the request type is
'describe’, then it will send back a copy of sharérviceinfo, which contains a list
of services. If there request type is describe, but for dqaddr service, then it will
call get Servi ceDescr opt i on for that service. For a format request, it will send
any format element found in formafo_map for that service. For a processing
request to a service, then theocess<Ser vi ceName> method will be called.

Once the class is written, it needs to be compiled up andreithieided in one
of the existing jar files, or added in as a jar filegteenst one3/ web/ WEB- | NF/ | i b
or a class file tgr eenst one3/ web/ VEB- | NF/ cl asses.

4.1.2 Loading the service

To have the library load in your new service, it needs to beisipe in a configura-
tion file somewhere. For a collection service, add a rewr vi ceRack> element
to the collection’sbui | dConfi g. xm file. This element should contain any infor-
mation that the class needs to configure its service(s). Fiteawide service,
add the<ser vi ceRack> element to the site’si t eConfi g. xm file, either in the
servi ceRackLi st or as part of aervi ced uster.

4.1.3 Using the service

If you are using the SOAP web service, then you can send an >@quest directly
to the service. The 'address’ of the request will be the serviame if it is a site-
wide service, cluster-name/service-name if it is siteenbddt belonging to a cluster,
or collection-name/service-name if it belongs to a coitett You will need to
know the format of the XML request and response that the sergkpects and
returns.

If you want to access your new service through the curremetanterface that
uses actions, then whether you need to do more work or nohdep whatkind of
service you have implemented. If you have written a new qoelyrowse service,
for example, that has teh same request and response forthatedsting services,
then you don’t need to do anything else. Your collection cesh jise the new query
service straight away. If the service is of an existing tyjpat needs soemthing

60

different in the request/response format, then you may teeabdify an existing
action to supply or use the new information. If the servicefia completely new
type, then you will probably need a new action to talk to thevise and display
the results.

4.2 creating new actions/pages
4.3 new interfaces

It is easy to create new interfaces to Greenstone3. Hereevialiting about inter-
faces other than those to display in typical browser.

Handheld devices: Use the standard servlet setup, but wdiffesent set of
XSLT files to format the pages for small screens, or use WML.

Java GUI Interface: There are couple of alternatives. Déipgnon what you
want to display in the GUI, you could talk to either a RecepiBb or a Message-
Router. The library classes can be set up and compiled irtdStdl program.
Talking to a Receptionist will give you access to pages of XMlis likely that
the standard Receptionist class would be used - this doianiform the data to
HTML. Queries such as “give me the home page of a collectiow’ ‘@o the fol-
lowing search” can be issued. All the data needed for thdtremuw is returned.
Queries are quite simple, but are limited to what kinds ofidiwtt are available in
the library. Talking to a MessageRouter requires a bit méiceteon the part of the
GUI program, but results in greater flexibility. The kindsapferies that can be is-
sued are individual units of action, such as “describe yaliirs'search”, “retrieve
the content for this document”. More than one request may nede made for
a particular feature of the GUI. However you can ask for anylimation of data
available in the system, you are not relying on Actions. Wlaat will implement
though, may be a lot like the Action code in terms of requegtisaces.

Interfaces in other programming languages: Because thencmrcation is
all XML based, other interfaces can talk to the Java librdrg communication
protocol is set up. This could be done using SOAP for examplie for Java
GUI interfaces, the program could talk to a Receptionistooa tMessageRouter.
e.g. Java interface. where you can interface to. MR vs Rixgest different
receptionists. e.g., handheld - using servlet, transfogmicpt, but new set of
XSLT Java program other program - talk to recpt but just gekibdML data for
pages. Java gui - just talk to MR, do all processing itself.

Remote interfaces: remote interfaces can be set up in the @y as above,
using a communication protocol between the interface, bedilbrary program.

4.4 New types of collections

The standard type of collection is built with the GreensRerl collection build-

ing system. There are many options to this, but it is contdévthat these options
don’t meet the needs of all collection builders. Greens3dm@s an ability to use
any type of collection you can come up with, assuming soma dade is provided.

61

There are four levels of customization that may be neededumeitv collections:
service, collection, interface XSLT, and action levels. Wi use the example
collections that come with Greenstone to describe theserdlift levels.

Firstly, new service classes need to be written to provigeftimctionality to
search/browse/whatever the collection. If the service® Isémilar interfaces and
functionality to the standard services, this may be all thaieeded. For example,
MGPP collections were the first to be served in Greenstone3henhve came
to do MG collections, all we had to do was write some new sergiasses that
interacted with MG instead of MGPP. Because these collestitsed the same
type of services, this was all we had to do. The format of thefigaration files
was similar, they just specified MG serviceRack classerdttan MGPP ones.

The XML Sample Texts (gberg) collection, however, was damgedlifferently
to the standard collections. New services were providedetoch the database
(built with Lucene) and to provide the documents and partdaafuments (using
XSLT to transform the raw XML files). The collectionConfig fitmd some extra
information in it: a list of the documents in the collectiolorag with their Titles.
Because the standard collection class has no notion of dentiists, a new class
was created (org.greenstone.gsdi3.collection. XMLG@tilbe). This class is basi-
cally the same as a standard collection class except thatksIfor and stores in
memory the documentList from the collectionConfig file.

To tell Greenstone to load up a different type of collectidass, we use an-
other configuration fileet ¢/ col I ecti onl ni t. xni . This specifies the name of the
collection class to use. Currently, this is all that is spediin that file, but you
may want to add parameters for the class etc.

<col l ectionlnit class="XMCollection"/>

The display for the collection is also quite different. Thante page for the
collection displays the list of documents. To achieve tttig, describe response
from the collection had to include the list, and a new XSLT wagten for the
collection that displayed this. Collection XSLT should b jn the transform
directory of the collectiot?.

Document display is significantly different to standard &rstone . There are
two modes of display: table of contents mode, and contentem@ilicking on a
document link from the collection home page takes the ustiettable of contents
for the collection. Clicking on one of the sections in thel¢éabf contents takes
them to a display of that section. To facilitate this, notyotd we need new XSLT
files , we also needed a new action. XMLDocumentAction waatert that used
two subactions, toc and text, for the different modes of ldigp

The Receptionist was told about this new action by the amtddf the following
element to the interfaceConfig.xml file:

<action nanme='xd' class='" XM_.Docunent Acti on’ >
<subaction nane='toc’ xslt="document-toc.xsl’'/>

1%These are currently only used when running Greenstone imalistributed fashion, but it will
be added in properly at some stage

62

<subaction nanme="text’ xslt="docunent-content.xsl’'/>
</ action>

XSLT files are linked to subactions rather than the action ashale. The
collection supplies the two XSLT files written approprigtér the data it contains.

All links that link to the documents have to be changed to heexd action
rather than the standard d action. These include the lirdka the home page, and
the links from query results.

Querying of the collection is almost the same as usual. Tleeygervice pro-
vides a list of parameters, does the query and then sendsabéstkof document
identifiers. The standard query action was fine for this ctilbe. The change oc-
curs in the way that the results are displayed—this is actishga using a format
statement supplied in the collectionConfig file inside therae node.
<sear ch>

<f or mat >
<gsf:tenpl ate mat ch="docunent Node" >

<xsl : param nane="col | Name"/ >

<xsl : param nane="servi ceNane"/ >

<t d>

<a href="{$li brary_nane}?a=xd&anp; sa=t ext &anp; c={ $col | Nane} &
anp; d={ @odel D} &np; p. a=q&anp; p. s={ $servi ceNane}" >
<xsl : choose>
<xsl : when test="net adat aLi st/ net adat a[@anme="Title']">
<gsf:netadata nanme="Title"/>
</ xsl : when>
<xsl : ot herw se>(section)</xsl:otherw se>
</ xsl : choose>
</ a>
</ b> from <a href="{$library_nane} ?a=xd&anp; sa=t oc&anp;
c={$col | Nanme} &anp; d={ @odel D} . rt &np; p. a=q&anp; p. s={ $ser vi ceNane}" >
<gsf:netadata name="Title" select="root"/>
</td>
</ gsf:tenpl ate>
</ f or mat >
</ search>

Instead of displaying an icon and the Title, it displays tlgeTof the section
and the title of the document. Both of these are linked to t®ithent: the section
title to the content of that section, the document title te thble of contents for
the document. Because these require non-standard arguioehe library, these
parts of the template are written in XSLT not Greenstone &irlanguage. As is
shown here it is perfectly feasible to write a format statatitbat includes XSLT
mixed in with Greenstone format elements.

The document display uses CSS to format the output—theskeatein the
collection and specified in the collections XSLT files. Thewwnents also specify
DTD files. Due to the way we read in the XML files, Tomcat somesnhas
trouble locating the DTDs. One option is to make all the liaksolute links to
files in the collection folder, the other option is to put thenGreenstone 's DTD
folder $GSDL3SRCHOVE/ r esour ces/ dt d.

63

4.5 The gs2 Interface

The library seen ahtt p://ww. gr eenst one. or g/ gr eenst one3/ nzdl is like a
mirror to ht t p: / / www. nzdl . or g—it aims to present the same collections, in the
same way but using Greenstone3 instead of GreenstoneZeslausew site (nzdl)
with a new interface (nzdl) which is based on the gs2 intexfathe web.xml file
had a new servlet entry in it to specify the combination oflrstig and nzdl inter-
face.

The site was created by making a directory called nzdl in ttes $older. A
siteConfig file was created. Because it is running on Linuxywsee able to link to
all the collections in the old Greenstone installation. Thevertcoll_from_gs2.pl
script was run over all the collections to produce the new Xdéhfiguration files.

The gs2 interface was created to be used by this site (andansarstandard
part of Greenstone). In many cases, creating a new intepfisteequires the new
images and XSLT to be added to the new directory(see Sectidrand 2.5). This
gs2 interface required a bit more customization.

The standard Greenstone3 navigation bar lists all thecavailable for the
collection. In Greenstone2 , the navigation bar provides dearch option, and
the different classifiers. This is not service specific, batdhcoded to the search
and classifiers. The XSLT that produces the navigation badee to be altered to
produce this. The standard receptionist (DefaultReceistipgathers a little bit of
extra information for each page of XML before transformimigthis is the list of
services for the collection and their display informatiafipwing the services to
be listed along the navigation bar. This is information fkateeded by every page
(except for the library home page) and therefore is obtaimedhe receptionist
instead of by each action. The nzdl interface uses the isks$t that comes in
the ClassifierBrowse service description to display tetolislassifiers.

The nzdl interface extends the gs2 interface to providefardifit looking home
page and an extra static 'gsdl’ page.

64

5 Distributed Greenstone

Greenstone is designed to run in a distributed fashion. Qeeristone installation
can talk to several sites on different computers. This megusome sort of com-
munication protocol. Any protocol can be used, currentlyhage a simple SOAP
protocol.

more explanation..

Library
Serviet

Receptionist,

Figure 10: A distributed digital library configuration ruing over several servers

We have used Apache Axis SOAP implementation. This is run sesnaet
in Tomcat. Axis is set up during installation of Greenstorfeor more details
about SOAP in Greenstone, see Appendix C. Debugging soagseibed in Ap-
pendix C.1.

5.1 Serving a site using soap

A web service for localsite comes with Greenstone. Howavés, not deployed
by default. To deploy it, run ruant depl oy-1 ocal site. If you want to set up
web services for other sites, ramt soap-depl oy-site. This will prompt you

for the sitename (its directory name), and a siteuri - a umigentifier for the web
service. Tomcat needs to be running for this to work, and yemdro have installed
the Greenstonesource code.

The ant target deploys the service for the site specifiedsuese file ¢si t ename>. wsdd)
is created which is used to specify the service. It can bed@uUHGSDL3HOVE/ r esour ces/ soap,
and is generated fromi t e. wsdd. t enpl at e.

The address of the new SOAP service will be tomcatservereadthreenstone3/services/sitename,
for example, www.greenstone.org/greenstone3/senizssite.

65

5.2 Connecting to a site web service

There are two ways to use a remote site. First, if you havea &ie running, then
the site can also connect to other remote sites. In the giti@eoml file, you need
to add a site element into the siteList element.

For example, to get siteA to talk to siteB, you need to depl&OAP server on
siteB, then add asi t e> element to thesi t eLi st > of SiteA's si t eConfi g. xn
file (in $GSDL3HOVE/ si t es/ sit eA/ siteConfig. xm).

In the<si t eLi st > element, add the following (substituting the chosen site ur
for siteBuri):

<site nanme="siteBuri"
address="http://| ocal host: 8080/ greenst one3/ servi ces/siteBuri"
type="soap"/>

(Note that localhost and 8080 should be changed to the vgloesntered
when installing Greenstone3. Localhost will only work farsers on the smae
machine.).

If you have changed the siteConfig.xml file for a site that isning, it will
need to be reconfigured. Either restart Tomcat, or recorditluough a URL.: e.g.
http://1 ocal host: 8080/ gr eenst one3/ | i br ary?a=s&sa=c. Several sites can be
connected to in this manner.

The second option is if you have a receptionist set up on a imachhere
you have no site, and you only want to connect to a single remsit¢. Instead of
using sitename in the servlet initialisation parameters (in $GSDL3#EIWEB-
INF/web.xml), you can specify remafgte name, remotssite_ type and remotssite.address.
A communicator object will be set up instead of a Messagegtaand the recep-
tionist will talk to the communicator.

66

A Using Greenstone3 from CVS

Greenstone3 is also available via CVS. You can downloadatest version of the
code. This is not guaranteed to be stable, in fact it is likelpe unstable. The
advantage of using CVS is that you can update the code anbekttest fixes.
Note that you will need the Java 2 SDK, version 1.4.0 or higlhad Ant
(Apache’s Java based build tool, http://ant.apache.osfpiled.
To check out the Greenstone code, use:

cvs -d :pserver:cvs_anon@vs. scns. wai kat 0. ac. nz: 2402/ usr/ | ocal /
gl obal -cvs/ gsdl -src co -P greenstone3

If you need it, the password for anonymous CVS acceaadsynous. Note
that some older versions of CVS have trouble accessing ¢pissitory due to the
port number being present. We are using version 1.11.1p1.

Greenstone is built and installed using Ant (Apache’s Jaaget build tool,
http://ant.apache.org). You will need a Java Developmentir&hment (1.4 or
higher), and Ant installed to use Greenstone. You can dasehAnt from
http: //ant . apache. or g/ bi ndownl oad. cgi . Make sure that the environment vari-
ables JAVAHOME and ANTHOME are set.

In the gr eenst one3 directory, you can runant’ which will give you a help
message. Runningnt -proj ect hel p’ gives a list of the targets that you can run
— these do various things like compile the source code,gidhte server etc.

TheREADME. t xt file has up-to-date instructions for installing from CVSidsly,
for a first time install, run ant prepare install’.

The filebui | d. properti es contains various parameters that can be set by the
user. Please check these settings before running thelatistalprocess. The in-
stall process will ask you if you accept the properties befarting. For a non-
interactive version of the install, rurant - Dproperti es. accept ed=yes instal |’

Tolog the output in build.log, runant - Dproperti es. accept ed=yes -1ogfile
build.log install’

Compilation includes Java and C/C++. On Windows, you wittchéo have Vi-
sual Studio or equivalent installed. Please checkthgi | e. wi ndows. c++. set up
property in build.properties — make sure it is set to the geteript of Visual Stu-
dio.

Note: gs3- set up sets the environment variablesDL3HOVE, GSDL3SRCHOME,
CLASSPATH, PATH, JAVA HOME and needs to be done in a shell before doing col-
lection building etc.

To run the library, use thgs3- server. sh/ bat shell scripts.

67

B Tomcat

Tomcat is a servlet container, and Greenstone3 runs as latseside it.

The file $GSDL3SRCHOVE/ packages/ t ontat / conf/ server. xni is the Tomcat
configuration file. A context for Greenstone3 is given by the fi
$GSDL3SRCHOVE/ packages/ t ontat/ conf/ Cat al i na/ | ocal host/ greenst one3. xni .
This tells Tomcat where to find the web.xml file, and what URgreenst one3)
to give it. Anything inside the context directory is accessivia Tomcatl. For
example, the index.html file that lives $GSDL3HOME can be accessed through the
URL | ocal host : 8080/ gr eenst one3/ i ndex. ht m . The gs2mgdemo collection’s
images can be accessed through
| ocal host : 8080/ gr eenst one3/sites/| ocal site/col | ect/gs2ngdeno/i nages/ .

Greenstone sets up Tomcat to run on port 8080 by default. dogehthis, you
can edit the tomcat.port property in build.properties.déndo this before installing
Greenstone, then running 'ant install’ will use the new parimber. If you want
to change it later on, shutdown tomcat, run 'ant configuteentwhen you restart
tomcat it will use the new port.

Note: Tomcat must be shutdown and restarted any time you wctekeges in
the following for those changes to take effect:

o $GSDL3HOVE/ WEB- | NF/ web. xmi
e $GSDL3SRCHOVE/ packages/ t ontat/ conf/server. xn
e any classes or jar files used by the servlets

On startup, the servlet loads in its collections and sesvidéthe site or col-
lection configuration files are changed, these changes wtillake effect until the
site/collection is reloaded. This can be done through theniguration messages
(see Section 1.7), or by restarting Tomcat.

We have disabled following symlinks for the greenstone Isérnvio enable it,
edit$GSDL3SRCHOVE/ packages/ t ontat / conf/ Cat al i na/ | ocal host / gr eenst one3. xm
and set "allowLinking’ to true.

By default, Tomcat allows directory listings. To disabléstichange the ’list-
ings’ parameter to false in the default servlet definitionTomcat's web.xml file
($GSDL3SRCHOVE/ packages/ t ontat / conf / web. xm):

We have set the greenstone context to be reloadable. Thiasnibat if a
class or resource file in web/WEB-INF/lib or web/WEB-INFstes changes, the
servlet will be reloaded. This is useful for development;, $lwould be turned off
for production mode (set the reloadable’ attribute todals

Tomcat uses a Manager to handle HTTP session informations mhy be
stored between restarts if possible. To use a persistesibsesandling manager,
uncomment thevanager > element in
$GSDL3SRCHOVE/ packages/ t ontat / conf/ server. xn . For the default manager,
session information is stored in the work directory:

can we use .htaccess files to restrict access??

68

$GSDL3SRCHOVE/ packages/ t ontat / wor k/ Cat al i na/ | ocal host/ gr eenst one3/ SESSI ONS. ser .
Delete this file to clear the cached session info. Note thatCkd needs to be shut-
down to delete this file.

B.1 Proxying Tomcat with apache

Instead of incorporating servlet support into your exigtiveb server, an easy alter-
native is to proxy Tomcat. Thiett p: // www. gr eenst one. or g/ gr eenst one3 Site
uses apache to proxy Tomcat. ProxyPass and ProxyPass&diredives need to
be added to the Virtualhost description for the www.greemstorg server.

<Vi rtual Host XX.XX.XX. XX>
Server Nane www. gr eenst one. org

ProxyPass /greenstone3 http://puka.cs. wai kat 0. ac. nz: 8080/ gr eenst one3
ProxyPassReverse /greenstone3 http://puka.cs.wai kat 0. ac. nz: 8080/ gr eenst one3
</ Vi rt ual Host >

In our example, the Greenstone3 servlet can be accessed at
http://ww. gr eenst one. or g/ gr eenst one3/ | i brary, instead of at
http:// puka. cs. wai kat 0. ac. nz: 8080/ gr eenst one3/ | i brary, which is not pub-
lically accessible.

B.2 Running Tomcat behind a proxy

Almost everything works fine when Tomcat is running behind@p. The only
time this causes trouble is if the servlet itself needs toaereadternal HTTP connec-
tions. We do this in the infomine demo collection for exampame of the service
classes sends HTTP requests to the infomine database @id@e Since this is
going through the proxy, a username and password is neetedndt sufficient
to prompt the user for a password because they are unlikehate a password
for the particular proxy that Tomcat is using. What we havaealat present is to
put a proxy element in the siteConfig.xml file. Here you haverter a suitable
username and password for the proxy server. Unfortunakedget are entered in
plain text. And the file is viewable via the servlet. So we nadxbtter solution.

69

C SOAP

Greenstone uses the Apache Axis SOAP implementation fenitited commu-
nications. AXis runs as a servlet inside Tomcat, and SOAP sesbices can be
deployed by this Axis servlet. The Greenstone installatimtess sets up Axis for
Tomcat, but does not deploy any services.

To deploy the SOAP service for localsite, raift depl oy-1 ocal site.

To deploy a SOAP service for other sites, mm soap- depl oy-site

This will prompt you for the sitename (the site’s directoignme), and a unique
URI for the site. It creates a new SOAPServer class for tlee sit
($GSDL3SRCHOVE src/ j aval or g/ gr eenst one/ gsdl 3/ SOAPSer ver <si t enane>. j ava),
creates a resource file for deploymessgDL3SRCHOVE/ r esour ces/ soap/ <si t enane>. wsdd),
and then tries to deploy the service.

Information about deployed services is maintained betWieemcat sessions—
you only need to deploy something once. To undeploy a siesmis soap- undepl oy-si t e.

The axis services can be accessdwakl host : 8080/ gr eenst one3/ i ndex. j sp.

C.1 Debugging SOAP

If you need to debug the SOAP stuff for some reason, or just walook at the
SOAP messages that are being passed back and forth, youectire (ISCP monitor.
This intercepts messages coming in to one port, displays,thad passes them to
another port. To run it, type:

java -cp $GSDL3HOVE/ VEB- I NF/ | i b/ axi s. j ar
org. apache. axis. utils.tcpnon

The listen port is the port that you want the monitor to beshgtg on. It should
'act as’ a Listener, with target hostname 127.0.0.1 (lozstl and target port the
port that Tomcat is running on (8080). You need to modify tddrass used to
talk to the SOAP service. For example, if you want to monitaffic between
the gateway site and the localsite SOAP server, you will rteegdit gateway'’s
siteConfig.xml file and change the port number (in the sitenel#) to whatever
you have chosen as the listen port.

For example, in the Admin panel of TCPMonitor the Target Haste might
be 127.0.0.1, and the Target Port # 8080. Set the Listen Rothéta different port,
such as 8070 and click Add. This produces a new tab panel wioerean see the
messages arriving at port 8070 before being forwarded to38&0. You then need
to set your test request from your SOAP application to arivport 8070 and you
will see copies of the messages in the new tab panel.

70

D Tidying up the formatting for imported Greenstone2
collections

D.1 Format statements: Greenstone?2 vs Greenstone3

The following table shows the Greenstone2 format elemamis their equivalents
in Greenstone3

Table 11: Greenstone3 equivalents of Greenstone?2 forma@nsents

Greenstone2 Greenstone3
[Text] <gsf:text/>
[nun <gsf: netadat a nanme="docnumi />
[link][/]1inkK] <gsf:link></gsf:link>or
<gsf:link type="document’ ></gsf:|ink>
[srclink][/srclink] <gsf:link type=" source’ ></gsf:|ink>
[icon] <gsf:icon/>or
<gsf:icon type= docunent’/>
[srcicon] <gsf:icon type='source' />
[Title] (metadata) <gsf:nmetadata name="Title'/>or
<gsf:netadata name="Title' select="current’/>
[parent: Title] <gsf:nmetadata nane="Titl e select="parent’ />
[parent (A1) :Title] <gsf:nmetadata nane="Title select=" ancestors’'/>
[parent (Top): Titl e] <gsf:netadata nanme="Title select="root’ />
[parent (AlIl’: "):Title] <gsf:nmetadata nane="Titl e sel ect="ancestors’
separator=": ' [>
[sibling(All': "):Title] <gsf:metadata name="Title multiple=true’
separator=": ' [>
{O H{[dc.Title], <gsf: choose- net adat a>
[dIs. Title], [Title]} <gsf:netadata name="dc.Title' />

<gsf:nmetadata name="dls. Title />
<gsf:netadata name="Title' />
</ gsf:choose- net adat a>
{IfH{[parent:Title], <gsf: choose- net adat a>
[parent:Title], [Title]} <gsf:metadata nane="Titl e select=" parent’/>
<gsf:netadata name="Title' />
</ gsf: choose- net adat a>
{I f }{[Subj ect], <gsf:switch>
<t d>[Subj ect] </ td>} <gsf: netadat a nane=" Subj ect’ />
<gsf:when test="exists >
<t d><gsf: net adat a name=" Subj ect’ /></td>
</ gsf: when></gsf:switch>

D.2 Cleaning up macros

Here we show some of the replace items that have been usedréensione?2

collections.
Getting rid of silly backslashes:

<repl ace scope="text’ macro="\\?2A\\\(" text="\("/>

Macro resolving using resource bundles and metadata:

71

<repl ace scope=" netadata’ nacro="_magazi nes_" bundl e=" NZDLMacr 0s"
key="Magazi nes"/ >
<repl ace scope="all’ macro="_thisO D' metadata="archivedir’'/>
<repl ace macro="_httpcol ling_"
text="sites/local site/collect/fol ktal e/i ndex/assoc"/>

Fixing up broken external links:

<repl ace macro="_httpext!|ink_&anp;rl| =1&anp; hr ef ="

t ext =" ?a=d&anp; c=f ol kt al e&anp; s0. ext =1&anp; d="/>
<repl ace macro="_httpextlink_&anp; rl =0&anp; hr ef ="

t ext =" ?a=p&anp; sa=ht M &anp; c=f ol kt al e&anp; url ="/>

These two examples show how to deal with Greenstone2'sreattimk macros.
The first one is for a 'relative’ external link. In this casbetlinks are like URL's
but they actually refer to Greenstone internal documentsth8 Greenstone3 link
is to the document, but with parameter s0.ext signifying tha d argument will
need translating before retrieving the content. The seexaanple is a truly ex-
ternal link. This is translated into a HTML type page actiarhere the URL is

presented as a frame along with the collection header inaatepframe.
Sometimes we need to add in macros to be resolved in a secmd st

<repl ace nmacro="_i conpdf " scope="net adat a"

text="& t;ing title="_texticonpdf_’' src="interfaces/default/inages/ipdf.gif’'/>"/>
<repl ace macro="_texticonpdf " scope="netadata" bundl e="interface_gs2"

key="texti conpdf"/>

72

