
Greenstone3 : A modular digital library.

Katherine Don

Department of Computer Science
University of Waikato

Hamilton, New Zealand

Greenstone Digital Library Version 3 is a complete redesignand reimplementation
of the Greenstone digital library software. The current version (Greenstone2) en-
joys considerable success and is being widely used. Greenstone3 will capitalize on
this success, and in addition it will

• improve flexibility, modularity, and extensibility
• lower the bar for “getting into” the Greenstone code with a view to under-

standing and extending it
• use XML where possible internally to improve the amount of self-documentation
• make full use of existing XML-related standards and software
• provide improved internationalization, particularly in terms of sort order, in-

formation browsing, etc.
• include new features that facilitate additional “content management” opera-

tions
• operate on a scale ranging from personal desktop to corporate library
• easily permit the incorporation of text mining operations
• use Java, to encourage multilinguality, X-compatibility,and to permit easier

inclusion of existing Java code (such as for text mining).

Parts of Greenstone will remain in other languages (e.g. MG,MGPP); JNI (Java
Native Interface) will be used to communicate with these.

A description of the general design and architecture of Greenstone3 is cov-
ered by the documentThe design of Greenstone3: An agent based dynamic digital
library (design-2002.ps, in the docs/manual directory).

This documentation consists of several parts. Section 1 is for administrators,
and covers Greenstone3 installation, how to access the library, and some adminis-
tration issues. Section 2 is for users of the software, and looks at using the sample
collections, creating new collections, and how to make small customizations to the
interface. The remaining sections are aimed towards the Greenstone developer.
Section 3 describes the run-time system, including the structure of the software,
and the message format. Section 4 describes how to add new features to Green-
stone, such as how to add new services, new page types, new plugins for different
document formats. Section 5 describes how to make Greenstone run in a distributed

1

fashion, using SOAP as an example communications protocol.Finally, there are
several appendices, including how to install Greenstone from CVS, some notes
on Tomcat and SOAP, and a comparison of Greenstone2 and Greenstone3 format
statements.

2

Contents

1 Greenstone installation and administration 5
1.1 Get and install Greenstone . 5
1.2 How the library works . 5

1.2.1 Restarting the library . 6
1.3 Directory structure . 6
1.4 Sites and interfaces . 6
1.5 Configuring Tomcat . 8
1.6 Configuring a Greenstone library 8

1.6.1 Site configuration file . 9
1.6.2 Interface configuration file 11

1.7 Run-time re-initialization . 11

2 Using Greenstone3 14
2.1 Using a collection . 14
2.2 Building a collection . 15

2.2.1 Using the Librarian Interface 15
2.2.2 Importing from Greenstone2 16
2.2.3 Using command line building 16

2.3 Collection configuration files . 18
2.3.1 collectionInit.xml . 18
2.3.2 collectionConfig.xml . 20
2.3.3 buildConfig.xml . 22

2.4 Formatting the collection . 22
2.4.1 Changing the service text strings 27

2.5 Customizing the interface . 29
2.5.1 Modifying an existing interface 29
2.5.2 Defining a new interface 30
2.5.3 Changing the interface language 30

3 Developing Greenstone3: Run-time system 32
3.1 Overview of modules?? . 32
3.2 Start up configuration . 33
3.3 Message passing . 35
3.4 ’describe’-type messages . 35
3.5 ’system’-type messages . 41
3.6 ’format’-type messages . 42
3.7 ’status’-type messages . 42
3.8 ’process’-type messages . 44

3.8.1 ’query’-type services . 45
3.8.2 ’browse’-type services 46
3.8.3 ’retrieve’-type services 47
3.8.4 ’process’-type services 49

3

3.8.5 ’applet’-type services . 50
3.8.6 ’enrich’-type services . 51

3.9 Page generation . 51
3.9.1 ’page’-type requests and their arguments 52
3.9.2 page format . 53
3.9.3 Receptionists . 54
3.9.4 Collection specific formatting 55
3.9.5 CGI arguments . 55
3.9.6 Page action . 55
3.9.7 Query action . 56
3.9.8 Applet action . 56
3.9.9 Document action . 57
3.9.10 XML Document action 57
3.9.11 GS2Browse action . 57
3.9.12 System action . 57

3.10 Other code information . 58

4 Developing Greenstone3 : Adding new features 59
4.1 Creating and using new services 59

4.1.1 Creating the service . 60
4.1.2 Loading the service . 60
4.1.3 Using the service . 60

4.2 creating new actions/pages . 61
4.3 new interfaces . 61
4.4 New types of collections . 61
4.5 The gs2 Interface . 64

5 Distributed Greenstone 65
5.1 Serving a site using soap . 65
5.2 Connecting to a site web service 66

A Using Greenstone3 from CVS 67

B Tomcat 68
B.1 Proxying Tomcat with apache . 69
B.2 Running Tomcat behind a proxy 69

C SOAP 70
C.1 Debugging SOAP . 70

D Tidying up the formatting for imported Greenstone2 collections 71
D.1 Format statements: Greenstone2 vs Greenstone3 71
D.2 Cleaning up macros . 71

4

1 Greenstone installation and administration

This section covers where to get Greenstone3 from, how to install it and how to run
it. The standard method of running Greenstone3 is as a Java servlet. We provide
the Tomcat servlet container to run the servlet. Standard web servers may be able
to be configured to provide servlet support, and thereby remove the need to use
Tomcat. Please see your web server documentation for this. This documentation
assumes that you are using Tomcat. To access Greenstone3, Tomcat must be started
up, and then it can be accessed via a web browser.

Ant (Java’s XML based build tool) is used for compilation, installation and
running Greenstone. Thebuild.xml file is the configuration file for the Greenstone
project, andbuild.properties contains parameters that can be altered by the user.

1.1 Get and install Greenstone

Greenstone3 is available for download from Sourceforge:
https://sourceforge.net/projects/greenstone3. There are Windows, Linux,
and source releases. The binary releases are self-installing executables: download
and run the file to install. A series of prompts will guide you through the instal-
lation process. The source release is a gzip’d tar file. Unzipand untar this, check
build.properties, then run’ant install’ to configure and compile the code.

The Greenstone3 library can be launched by running the server program. This
is accessible from the Start menu on Windows, or by running thegs3-server.sh/bat
script in the top levelgreenstone3 directory. This program will start up the Tom-
cat web server and launch a browser.

Alternatively, you can start it up using Ant: run’ant start’, which starts up
Tomcat, then in a browser go tohttp://localhost:8080/greenstone3
(or http://your-computer-name:your-chosen-port/greenstone3).
This gets you to a welcome page containing links to four servlets: thetest servlet
(this allows you to check that Tomcat is running properly); the standardlibrary
servlet which serveslocalsite site with thegs2 interface; thegs3library servlet
which serveslocalsite using thedefault Greenstone3-style interface; and the
gateway servlet, which servesgateway site with thedefault interface. Thegateway
site uses a SOAP connection to communicate withlocalsite, and demonstrates
the library working in a distributed fashion. The SOAP connection is not enabled
by default - to enable it, run’ant deploy-localsite’.

Greenstone3 is also available through CVS (Concurrent Versioning System).
This provides the latest development version, and is not guaranteed to be stable.
Appendix A describes how to download and install Greenstone3 from CVS.

1.2 How the library works

The standard library program is a Java servlet. We use the Tomcat servlet container
to present the servlets over the web. Tomcat takes CGI-styleURLs and passes the

5

arguments to the servlet, which processes these and returnsa page of HTML. As
far as an end-user is concerned, a servlet is a Java version ofa CGI program. The
interaction is similar: access is via a web browser, using arguments in a URL.

Other types of interfaces can be used, such as Java GUI programs. See Sec-
tion 4.3 for details about how to make these.

1.2.1 Restarting the library

You can restart Tomcat by clicking ’Restart Server’ on the little server program.
You should restart the server any time you make changes in thefollowing for those
changes to take effect:

• $GSDL3HOME/WEB-INF/web.xml

• $GSDL3SRCHOME/packages/tomcat/conf/server.xml

• any classes or jar files used by the servlets

1.3 Directory structure

Table 1 shows the file hierarchy for Greenstone3. The first part shows the common
stuff which can be shared between Greenstone users—the source, libraries etc.
The second part shows the file hierarchy for the web directory, which comprises the
greenstone3 context for Tomcat, and is accessible via Tomcat. The main directories
are for sites and interfaces: there can be several sites and interfaces per installation,
and they are described in the following section.

Two environment variables used by Greenstone3 are often mentioned in this
manual:$GSDL3SRCHOME and$GSDL3HOME. $GSDL3SRCHOME refers to the top-level
greenstone3 directory, while$GSDL3HOME refers to theweb directory. The web di-
rectory contains everything needed to serve the Greenstone3 library using Tomcat,
and doesn’t necessarily need to live with the rest of the Greenstone3 source.

1.4 Sites and interfaces

Sites and interfaces contain the content and presentation information, respectively,
for the digital library. A site is comprised of a set of collections and possibly
some site-wide services. An interface (in this web-based servlet context) is a set
of images along with a set of XSLT files used for translating xml output from the
library into an appropriate form—HTML in general.

One Greenstone3 installation can have many sites and interfaces, and these can
be paired in different combinations. One instantiation of aservlet uses one site
and one interface, so every specified pairing results in a newservlet instance. For
example, a single site might be served with two different interfaces. This provides
different modes of access to the same content. e.g. HTML vs WML, or perhaps

6

Table 1: The Greenstone directory structure
directory description
greenstone3 The main installation directory—$GSDL3SRCHOME is set to

this directory
greenstone3/src Source code lives here
greenstone3/src/java/ main Greenstone3 java source code
greenstone3/src/packages Imported source packages from other systems e.g. indexing

packages may go here
greenstone3/lib Shared library files
greenstone3/lib/java Java jar files not needed in the Greenstone3 runtime
greenstone3/lib/jni Jar files and shared library files (.so,.jnilib, .dll) needed for JNI

components
greenstone3/resources any resources that may be needed
greenstone3/resources/soap soap service description files
greenstone3/bin executable stuff lives here
greenstone3/bin/script some Perl and/or shell scripts
greenstone3/packages External packages that may be installed as part of greenstone,

e.g. Tomcat
greenstone3/docs Documentation
greenstone3/gli Greenstone Librarian Interface code
greenstone3/gs2build collection building code
greenstone3/web This is where the web site is defined. Any static HTML files

can go here. This directory is the root directory used by Tom-
cat when serving Greenstone3. $GSDL3HOME is set to this
directory.

greenstone3/web/WEB-INF The web.xml file lives here (servlet configuration information
for Tomcat)

greenstone3/web/WEB-INF/classes Individual class files needed by the servlet go in here, also prop-
erties files for java resource bundles - used to handle all thelan-
guage specific text. This directory is on the servlet classpath

greenstone3/web/WEB-INF/lib jar files needed by the servlets go here
greenstone3/web/sites Contains directories for different sites—a site is a set of collec-

tions and services served by a single MessageRouter (MR). The
MR may have connections (e.g. soap) to other sites

greenstone3/web/sites/localsite An example site - the site configuration file lives here
greenstone3/web/sites/localsite/collect The collections directory
greenstone3/web/sites/localsite/images Site specific images
greenstone3/web/sites/localsite/transforms Site specific transforms
greenstone3/web/interfaces Contains directories for different interfaces - an interface is de-

fined by its images and XSLT files
greenstone3/web/interfaces/default The default interface
greenstone3/web/interfaces/default/images The images for the default interface
greenstone3/web/interfaces/default/js The javascript libraries for the default interface
greenstone3/web/interfaces/default/style The CSS stylesheets for the default interface
greenstone3/web/interfaces/default/transforms The XSLT files for the default interface
greenstone3/web/applet jar files needed by applets can go here

7

providing a completely different look and feel for different audiences. Alterna-
tively, a standard interface may be used with many differentsites—providing a
consistent mode of access to a lot of different content.

Collections live in thecollect directory of a site. Any collections that are
found in this directory when the servlet is initialized willbe loaded up. Public
collections will appear on the library home page, while private collections will be
hidden. These can still be accessed by typing in cgi arguments. Collections require
valid configuration files, but apart from this, nothing needsto be done to the site
to use new collections. Collections added while Tomcat is running will not be
noticed automatically. Either the server needs to be restarted, or a configuration
request may be sent to the library, triggering a (re)load of the collection (this is
described in Section 1.7).

There are two sites that come with the distribution:localsite, andgateway.
localsite has several demo collections, whilegateway has none.gateway spec-
ifies that a SOAP connection should be made tolocalsite. Getting this to work
involves setting up a soap server for localsite: see Section5 for details. There are
also two interfaces provided in the distribution:default andgs2. The default in-
terface is a generic Greenstone3 interface, while thegs2 interface aims to look like
the old Greenstone2 interface.

Each site and interface has a configuration file which specifies parameters for
the site or interface—these are described in Section 1.6.

1.5 Configuring Tomcat

The file$GSDL3HOME/WEB-INF/web.xml contains the configuration information for
Tomcat. It tells Tomcat what servlets to load, what initial parameters to pass them,
and what web names map to the servlets. There are four servlets specified in
web.xml (these correspond to the four servlet links in the welcome page for Green-
stone3): one is a test servlet that just prints “hello greenstone” to a web page. This
is useful if you are having trouble getting Tomcat set up. Theother three are the
Greenstone library servlets described in Section 1.1,library, gs3library and
gateway. Each servlet must specify which site and which interface touse. Having
multiple servlets provides a way of serving different sites, or the same site with a
different style of presentation.site name andinterface name are just two exam-
ples of initialization parameters used by the library servlets. The full list is shown
in Table 2.

For more details about Tomcat see Appendix B.

1.6 Configuring a Greenstone library

Initial Greenstone3 system configuration is determined by aset of XML config-
uration files. Each site has a configuration file that binds parameters for the site,
siteConfig.xml. Each interface has a configuration file,interfaceConfig.xml,
that specifies parameters for the interface. Collections also have several config-

8

Table 2: Greenstone servlet initialization parameters
name sample value description
library name library the web name of the servlet
interfacename default the name of the interface to use
site name localsite the name of the local site to use (use either

site name or the three remotesite parameters)
remotesite name org.greenstone.site1 the name of a remote site (can be anything??)
remotesite type soap the type of server running on the site
remotesite address http://www.greenstone.org/

greenstone3/services/
localsite

The address of the server

default lang en the default language for the interface
receptionistclass MyReceptionist (optional) specifies an alternative Receptionist

to use (default is DefaultReceptionist)
messagerouterclass NewMessageRouter (optional) specifies an alternative Message-

Router to use (default is MessageRouter)
paramsclass GS2Params (optional) specifies an alternative GSParams

class to use

uration files; these are discussed in Section 2.3. The configuration files are read
in when the system is initialized, and their contents are cached in memory. This
means that changes made to these files once the system is running will not take
immediate effect. Tomcat needs to be restarted for changes to the interface con-
figuration file to take effect. However, changes to the site configuration file can be
incorporated sending a system command to the library. Thereare a series of sys-
tem commands that can be sent to the library to induce reconfiguration of different
modules, including reloading the whole site. This removes the need to restart the
system to reflect these changes. These commands are described in Section 1.7.

1.6.1 Site configuration file

The file siteConfig.xml specifies the URI for the site (localSiteName), the
HTTP address for site resources (httpAddress), any ServiceClusters that the
site provides (for example, collection building), anyServiceRacks that do not be-
long to a cluster or collection, and a list of known external sites to connect to.
Collections are not specified in the site configuration file, but are determined by
the contents of the site’s collect directory.

The HTTP address is used for retrieving resources from a siteoutside the XML
protocol. Because a site is HTTP accessible through Tomcat,any files (e.g. images)
belonging to that site or to its collections can be specified in the HTML of a page
by a URL. This avoids having to retrieve these files from a remote site via the XML
protocol1.

1Currently, sites live inside the Tomcat greenstone3 root context, and therefore all their content
is accessible over HTTP via the Tomcat address. We need to seeif parts can be restricted. Also, if
we use a different protocol, then resources from remote sites may need to come through the XML.
Also, if we are running locally without using Tomcat, we may want to get them via file:// rather than

9

<siteConfig>
<localSiteName value="org.greenstone.localsite"/>
<httpAddress value="http://localhost:8080/greenstone3/sites/localsite"/>
<serviceClusterList/>
<serviceRackList/>
<siteList/>

</siteConfig>

<siteConfig>
<localSiteName value="org.greenstone.gsdl1"/>
<httpAddress value="http://localhost:8080/greenstone3/sites/gsdl1"/>
<serviceClusterList>
<serviceCluster name="build">

<metadataList>
<metadata name="Title">Collection builder</metadata>
<metadata name="Description">Builds collections in a

gsdl2-style manner</metadata>
</metadataList>
<serviceRackList>

<serviceRack name="GS2Construct"/>
</serviceRackList>

</serviceCluster>
</serviceClusterList>
<siteList>
<site name="org.greenstone.localsite"

address="http://localhost:8080/greenstone3/services/localsite"
type="soap"/>

</siteList>
</siteConfig>

Figure 1: Two sample site configuration files

Figure 1 shows two example site configuration files. The first example is for
a rudimentary site with no site-wide services, which does not connect to any ex-
ternal sites. The second example is for a site with one site-wide service clus-
ter - a collection building cluster. It also connects to the first site using SOAP.
These two sites happen to be running on the same machine, which is why they can
uselocalhost in the address. For sitegsdl1 to talk to sitelocalsite, a SOAP
server must be run forlocalsite. The address of the SOAP server, in this case, is
http://localhost:8080/greenstone3/services/localsite.

Another element that can appear in a site configuration file isreplaceList.
This must have anid attribute, and may contain one or morereplace elements.
Replace elements are discussed in Section 2.3. The list found in asiteConfig.xml
file can be applied to any collection by adding areplaceListRef element (with
the appropriateid attribute) to itscollectionConfig.xml file.

http://.

10

1.6.2 Interface configuration file

The interface configuration fileinterfaceConfig.xml lists all the actions that the
interface knows about at the start (other ones can be loaded dynamically). Actions
create the web pages for the library: there is generally one Action per type of page.
For example, a query action produces the pages for searching, while a document
action displays the documents. The configuration file specifies what short name
each action maps to (this is used in library URLs for the a (action) parameter) e.g.
QueryAction should usea=q. If the interface uses XSLT, it specifies what XSLT
file should be used for each action and possibly each subaction. This makes it easy
for developers to implement and use different actions and/or XSLT files without
recompilation. The server must be restarted, however.

It also lists all the languages that the interface text files have been translated
into. These have aname attribute, which is the ISO code for the language, and a
displayElement which gives the language name in that language (note that this
file should be encoded in UTF-8). This language list is used onthe Preferences
page to allow the user to change the interface language. Details on how to add a
new language to a Greenstone3 library are shown in Section 2.5.3.

An optionList element can be used to disable or enable some optional func-
tionality for the interface. Currently there are three options that can be enabled:

highlightQueryTerms Whether search term highlighting is available
or not

berryBaskets Whether berry basket functionality is avail-
able or not

displayAnnotationService Whether any annotation services (specified in
the site config file) should be displayed with a
document or not.

An interface may be based on an existing one, for example, thegs2 interface
is based on the default interface. This means that it will useany images or tem-
plates from the base one unless overridden in the current one. ThebaseInterface
attribute of the<interfaceConfig> element is used to specify the base interface.

1.7 Run-time re-initialization

When Tomcat is started up, the site and interface configuration files are read in, and
actions/services/collections loaded as necessary. The configuration is then static
unless Tomcat is restarted, or re-configuration commands issued.

There are several commands that can be issued to Tomcat to avoid having to
restart the server. These can reload the entire site, or justindividual collections.
Unfortunately at present there are no commands to reconfigure the interface, so
if the interface configuration file has changed, Tomcat must be restarted for those
changes to take effect. Similarly, if the Java classes are modified, Tomcat must be
restarted then too.

Currently, the runtime configuration commands can only be accessed by typing

11

<interfaceConfig>
<actionList>
<action name=’p’ class=’PageAction’>

<subaction name=’home’ xslt=’home.xsl’/>
<subaction name=’about’ xslt=’about.xsl’/>
<subaction name=’help’ xslt=’help.xsl’/>
<subaction name=’pref’ xslt=’pref.xsl’/>
<subaction name=’nav’ xslt=’nav.xsl’/><!-- used for the

collection header frame -->
<subaction name="html" xslt="html.xsl"/> <!-- used to put an

external page into a frame with a collection header-->
</action>
<action name=’q’ class=’QueryAction’ xslt=’basicquery.xsl’/>
<action name=’b’ class=’GS2BrowseAction’ xslt=’classifier.xsl’/>
<action name=’a’ class=’AppletAction’ xslt=’applet.xsl’/>
<action name=’d’ class=’DocumentAction’ xslt=’document.xsl’/>
<action name=’xd’ class=’XMLDocumentAction’>

<subaction name=’toc’ xslt=’document-toc.xsl’/>
<subaction name=’text’ xslt=’document-content.xsl’/>

</action>
<action name=’pr’ class=’ProcessAction’ xslt=’process.xsl’/>
<action name=’s’ class=’SystemAction’ xslt=’system.xsl’/>
<action name=’g’ class=’GeneralAction’>

<subaction name="berry" xslt=’berry.xsl’/>
</action>

</actionList>
<languageList>
<language name="en">

<displayItem name=’name’>English</displayItem>
</language>
<language name="fr">

<displayItem name=’name’>Franais</displayItem>
</language>
<language name=’es’>

<displayItem name=’name’>Espaol</displayItem>
</language>

</languageList>
<optionList>
<option name="highlightQueryTerms" value="true"/>
<option name="berryBaskets" value="true"/>

</optionList>
</interfaceConfig>

Figure 2: Default interface configuration file

12

Table 3: Example run-time configuration arguments.
a=s&sa=c reconfigures the whole site. Reads in siteConfig.xml, reloads all the

collections. Just part of this can be specified with another argu-
mentss (system subset). The valid values arecollectionList,
siteList, serviceList, clusterList.

a=s&sa=c&sc=XXX reconfigures the XXX collection or cluster.ss can also be used here,
valid values aremetadataList andserviceList.

a=s&sa=a (re)activate a specific module. Modules are specified using two argu-
ments,st (system module type) andsn (system module name). Valid
types arecollection, cluster site.

a=s&sa=d deactivate a module.st andsn can be used here too. Valid types are
collection, cluster, site, service. Modules are removed
from the current configuration, but will reappear if Tomcat is restarted.

a=s&sa=d&sc=XXX deactivate a module belonging to the XXX collection or cluster.st and
sn can be used here too. Valid types areservice.

arguments into the URL; there is no nice web form yet to do this.
The arguments are entered after thelibrary? part of the URL. There are

three types of commands: configure, activate, deactivate. These are specified by
a=s&sa=c, a=s&sa=a, anda=s&sa=d, respectively (a is action,sa is subaction). By
default, the requests are sent to the MessageRouter, but they can be sent to a col-
lection/cluster by the addition ofsc=xxx, wherexxx is the name of the collection
or cluster. Table 3 describes the commands and arguments in abit more detail.

13

2 Using Greenstone3

Once Greenstone3 is installed, the sample collections can be accessed. The in-
stallation comes with several example collections, and Section 2.1 describes these
collections and how to use them. Section 2.2 describes how tobuild new collec-
tions.

2.1 Using a collection

A collection typically consists of a set of documents, whichcould be text, HTML,
word, PDF, images, bibliographic records etc, along with some access methods, or
“services”. Typical access methods include searching or browsing for document
identifiers, and retrieval of content or metadata for those identifiers. Searching in-
volves entering words or phrases and getting back lists of documents that contain
those words. The search terms may be restricted to particular fields of the docu-
ment.

Browsing involves navigating pre-defined hierarchies of documents, following
links of interest to find documents. The hierarchies may be constructed on different
metadata fields, for example, alphabetical lists of Titles,or a hierarchy of Subject
classifications. Clicking on a bookshelf icon takes you to a lower level in the
hierarchy, while clicking on a book or page icon takes you to adocument.

In the standard interface that comes with Greenstone32, collections in a digital
library are presented in the following manner. The ’home’ page of the library
shows a list of all the public collections in that library. Clicking on a collection
link takes you to the home page for the collection, which we call the collection’s
’about’ page. The standard page banner for a collection looks something like that
shown in Figure 3.

Figure 3: A sample collection page banner

The image at the top left is a link to the collection’s home page. The top
right has buttons to link to the library home page, help and preferences pages. All
the available services are arrayed along a navigation bar, along the bottom of the
banner. Clicking on a name accesses that service.

Search type services generally provide a form to fill in, withparameters includ-
ing what field or granularity to search, and the query itself.Clicking the search
button carries out the search, and a list of matching documents will be displayed.
Clicking on the icons in the result list takes you to the document itself.

2of course, this is all customizable

14

Once you are looking at a document, clicking the open book icon at the top
of the document, underneath the navigation bar, will take you back to the service
page that you accessed the document from.

2.2 Building a collection

There are three ways to get a new collection into Greenstone3. The most common
way is to use the Greenstone Librarian Interface to create a collection. If you
have existing collections in a Greenstone2 installation, these can be imported into
Greenstone3. Thirdly, you can use the Perl command line building scripts directly.

Collections live in thecollect directory of a site. As described in Section 1.4,
there can be several sites per Greenstone3 installation. The collect directory is at
$GSDL3HOME/sites/site-name/collect, where site-name is the name of the site
you want your new collection to belong to.

The following three sections briefly describe how to create acollection using
GLI, how to import a collection from Greenstone2, and how to use command line
building. Once a collection has been built (and is located inthe collect direc-
tory), the library server needs to be notified that there is a new collection. This
can be accomplished in two ways3. If you are the library administrator, you can
restart Tomcat. The library servlet will then be created afresh, and will discover
the new collection when it scans the collect directory for the collection list. Al-
ternatively, an activate collection command can be issued to the servlet, using the
argumentsa=s&sa=a&st=collection&sn=collname, wherecollname should be
replaced with the collection name—this tells the library program to (re)load the
collname collection.

2.2.1 Using the Librarian Interface

The Greenstone Librarian Interface (GLI) can be used to create collections. The
procedure is the same as for Greenstone2, but it works in a Greenstone3 context. It
can be started under Windows by selecting Greenstone Librarian Interface from the
Greenstone 3 Digital Library menu in the Program Files section of the Start menu.
On Linux, runant gli from the greenstone3 directory, or run./gli4gs3.sh
from the$GSDL3SRCHOME/gli directory.

Currently, the GLI works almost exactly the same as for Greenstone24. Col-
lection configuration is done in a Greenstone2 manner. The main difference is that
Greenstone3 has different sites and interfaces and servlets, whereas Greenstone2
has a single collect directory, and a single runtime cgi program.

The GLI for Greenstone3 has a couple of new configuration parameters: site
and servlet. It operates within a single site—you can edit, delete, and create new
collections within this site. A servlet is also specified forthat site—this is used
when previewing a collection. While you are working in one site, you cannot

3and eventually there will also probably be automatic polling for new collections
4Eventually the GLI will be modified to use Greenstone3 XML configuration files.

15

edit collections from another site. However, you can base a collection on one
from another site. To change the working site and/or servlet, go to Preferences-
>Connection in the File menu. By default, the GLI will use sitelocalsite, and
servletlibrary.

Collection building using the GLI will use the Greenstone2 Perl scripts and plu-
gins. At the conclusion of the Greenstone2 build process, a conversion script will
be run to create the Greenstone3 configuration files. This means that format state-
ments are no longer ’live’—changing these will require changes to the Greenstone3
configuration files. Clicking the Preview Collection buttonwill re-run the configu-
ration file conversion script. If you change anything on the Format panel, you will
need to click Preview Collection. Just reloading the collection via a browser will
not be enough.

Detailed instructions about using the GLI can be found in Sections 3.1 and 3.2
of the Greenstone2 User’s Guide (GS2-User-en.pdf). This can be found in your
Greenstone2 installation, or in the$GSDL3SRCHOME/docs/manual directory if you
have installed Greenstone3 from a distribution.

2.2.2 Importing from Greenstone2

Pre-built Greenstone2 collections can also be used in Greenstone3. The collection
folder should be copied to the collect directory of the site it is to appear in (or a
symbolic link may be used if possible). The Greenstone3 run time system requires
different configuration files for a collection, so you need torun a conversion script.
All this does is create the newcollectionConfig.xml and buildConfig.xml

from the oldcollect.cfg andbuild.cfg files. It does not change the collection
in any way, so it can still be used by Greenstone2 software.

The conversion script isconvert coll from gs2.pl. To run it, make sure you
have runsource setup.bash (or setup in Windows) in the$GSDL3SRCHOME/gs2build
directory (as well as running the standardgs3-setup command). Then you need
to specify the path to the collect directory and the collection name as parameters to
the conversion script. For example,

convert_coll_from_gs2.pl -collectdir
$GSDL3HOME/sites/localsite/collect gs2mgdemo

The script attempts to create Greenstone3 format statements from the old Green-
stone2 ones. The conversion may not always work properly, soif the collection
looks a bit strange under Greenstone3, you should check the format statements.
Format statements are described in Section 2.4.

Once again, to have the collection recognized by the libraryservlet, you can
either restart Tomcat, or load it dynamically.

2.2.3 Using command line building

This is the same procedure as for Greenstone2 command line building, with the
addition of a final step to create the Greenstone3 configuration files. The basic

16

steps are (for a new collection called testcol):
Linux:

cd greenstone3
source gs3-setup.sh
cd gs2build
source setup.bash
cd ../
mkcol.pl -collectdir $GSDL3HOME/sites/localsite/collect testcol
put source documents and metadata into

$GSDL3HOME/sites/localsite/collect/testcol/import
edit $GSDL3HOME/sites/localsite/collect/testcol/etc/collect.cfg as

appropriate
import.pl -collectdir $GSDL3HOME/sites/localsite/collect testcol
buildcol.pl -collectdir $GSDL3HOME/sites/localsite/collect testcol
rename the $GSDL3HOME/sites/localsite/collect/testcol/building

directory to index
convert_coll_from_gs2.pl -collectdir $GSDL3HOME/sites/localsite/collect

testcol
%$

Windows:

cd greenstone3
gs3-setup
cd gs2build
setup
cd ..
perl -S mkcol.pl -collectdir %GSDL3HOME%\sites\localsite\collect testcol
put source documents and metadata into

%GSDL3HOME%\sites\localsite\collect\testcol\import
edit %GSDL3HOME%\sites\localsite\collect\testcol\etc\collect.cfg as

appropriate
perl -S import.pl -collectdir %GSDL3HOME%\sites\localsite\collect testcol
perl -S buildcol.pl -collectdir %GSDL3HOME%\sites\localsite\collect testcol
rename the %GSDL3HOME%\sites\localsite\collect\testcol\building directory

to index
perl -S convert_coll_from_gs2.pl -collectdir

%GSDL3HOME%\sites\localsite\collect testcol

Once the build process is complete, Tomcat should be prompted to reload the
collection—either by restarting the server, or by sending an activate collection
command to the library servlet.

Metadata for documents can be added usingmetadata.xml files. Ametadata.xml

file has a root element of<DirectoryMetadata>. This encloses a series of<FileSet>

items. Neither of these tags has any attributes. Each<FileSet> item includes two
parts: firstly, one or more<FileName> tags, each of which encloses a regular ex-
pression to identify the files which are to be assigned the metadata. Only files in
the same directory as themetadata.xml file, or in one of its child directories, will
be selected. The filename tag encloses the regular expression as text, e.g.:

<FileName>example</FileName>

17

This would match any file containing the text ’example’ in itsname. The sec-
ond part of the<FileSet> item is a<Description> item. The<Description> tag
has no attributes, but encloses one or more<Metadata> tags. Each<Metadata>
tag contains one metadata item, i.e. a label to describe the metadata and a corre-
sponding value. The<Metadata> tag has one compulsory attribute:’name’. This
attribute gives the metadata label to add to the document. Each <Metadata> tag
also has an optional attribute:’mode’. If this attribute is set to’accumulate’ then
the value is added to the document, and any existing values for that metadata item
are retained. If the attribute is set to’set’ or is omitted, then any existing value of
the metadata item will be deleted.

Figure 4 shows an example metadata.xml file. Here, only one file pattern is
found in each file set. However, theDescription tag contains a number of separate
metadata items. Note that theTitle metadata does not have themode=accumulate
attribute. This means that when this title is assigned to a document, any existing
Title information will be lost.

2.3 Collection configuration files

Each collection has two, or possibly three, Greenstone3 configuration files,
collectionConfig.xml,buildConfig.xml, and optionallycollectionInit.xml,
that give metadata, display and other information for the collection. Currently,
collectionConfig.xml andbuildConfig.xml are generated fromcollect.cfg
and build.cfg. At some stage, the collection building process and the Librar-
ian Interface will be modified to use these files directly.collect.cfg and/or
collectionConfig.xml includes user-defined presentation metadata for the col-
lection, such as its name and theAbout this collection text; gives formatting infor-
mation for the collection display; and also gives instructions on how the collection
is to be built.build.cfg and/orbuildConfig.xml are produced by the build-time
process and include any metadata that can be determined automatically. It also
includes configuration information for any ServiceRacks needed by the collection.

All the configuration files should be encoded using UTF-8.
The format ofcollect.cfg andbuild.cfg are not discussed here. Please see

the Greenstone2 manuals for more information regarding these files.

2.3.1 collectionInit.xml

This optional file is only used for non-standard, customizedcollections. It specifies
the class name of the non-standard collection class. The only syntax so far is the
class name:

<collectionInit class="XMLCollection"/>

Section 4.4 describes an example collection where this file is used. Depending
on the type of collection that this is used for, one or both of the other configuration
files may not be needed.

18

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DirectoryMetadata SYSTEM "http://greenstone.org/dtd/DirectoryMetadata

/1.0/DirectoryMetadata.dtd">
<DirectoryMetadata>

<FileSet>
<FileName>ec160e</FileName>
<Description>

<Metadata name="Title">The Courier - No.160 - Nov - Dec 1996 -
Dossier Habitat - Country reports: Fiji , Tonga (ec160e)</Metadata>

<Metadata mode="accumulate" name="Language">English</Metadata>
<Metadata mode="accumulate" name="Subject">Settlements and housing:

general works incl. low- cost housing, planning techniques, surveying,
etc.</Metadata>

<Metadata mode="accumulate" name="Subject">The Courier ACP 1990 - 1996
Africa-Caribbean-Pacific - European Union</Metadata>

<Metadata mode="accumulate" name="Organization">EC Courier</Metadata>
<Metadata mode="accumulate" name="AZList">T.1</Metadata>

</Description>
</FileSet>
<FileSet>
<FileName>b22bue</FileName>
<Description>

<Metadata name="Title">Butterfly Farming in Papua New Guinea
(b22bue)</Metadata>

<Metadata mode="accumulate" name="Language">English</Metadata>
<Metadata mode="accumulate" name="Subject">Other animals (micro-

livestock, little known animals, silkworms, reptiles, frogs,
snails, game, etc.)</Metadata>

<Metadata mode="accumulate" name="Organization">BOSTID</Metadata>
<Metadata mode="accumulate" name="AZList">T.1</Metadata>
<Metadata mode="accumulate" name="Keyword">start a butterfly farm

</Metadata>
</Description>

</FileSet>
</DirectoryMetadata>

Figure 4: Sample metadata.xml file

19

2.3.2 collectionConfig.xml

The collection configuration file is where the collection designer (e.g. a librarian)
decides what form the collection should take. So far this fileonly includes the
presentation aspects needed by the run-time system. Instructions for collection
building have yet to be defined. Presentation aspects include collection metadata
such as title and description, display text for indexes, andformat statements for
search results, classifiers etc. The format ofcollectionConfig.xml is still under
consideration. However, Figure 5 shows the parts of it that have been defined so
far.

Display elements for a collection can be entered in any language—uselang=’en’
attributes to specify which language they are in.

The<metadataList> element specifies some collection metadata, such as cre-
ator. The<displayItemList> specifies some language dependent information that
is used for collection display, such as collection name and short description. These
displayItem elements can be specified in different languages.

The<search> element provides some display and formatting information for
the search indexes, while the<browse> element concerns classifiers, and the<display>

element looks at document display.
Inside the<search> and <browse> elements,<displayItem> elements are

used to provide titles for the indexes or classifiers, while<format> elements pro-
vide formatting instructions, typically for a document or classifier node in a list of
results. Placing the<format> instructions at the top level in thesearch or browse
element will apply the format to all the indexes or classifiers, while placing it inside
an individualindex or classifier element will restrict that formatting instruction
to that item.

The<display> element contains optional formatting information for the dis-
play of documents. Templates that can be specified here includedocumentHeading
andDocumentContent. Other formatting options may also be specified here, such
as whether to display a table of contents and/or cover image for the documents.

Format elements are described in Section 2.4.
An optional <replaceList> element can be included at the top level. This

contains a list of strings and their replacements. This is particularly useful for
Greenstone2 collections that use macros.

The format is like the following:

<replaceList>
<replace scope=’text’ macro="xxx" text="yyy"/>
<replace scope=’metadata’ macro="xxx" bundle="yyy" key="zzz"/>
<replace scope=’all’ macro=’xxx’ metadata=’yyy’/>
</replaceList>

Scope determines on what text the replacements are carried out: text, metadata,
andall (both text and metadata). An empty scope attribute is equivalent to scope=all.
Each replace type can be used with all scope values. Replacing uses Java’s ’String.replaceAll’
functionality, so macro and replacement text are actually regular expressions. The

20

<collectionConfig xmlns:gsf="http://www.greenstone.org/greenstone3/
schema/ConfigFormat" xmlns:xslt="http://www.w3.org/1999/XSL/Transform">
<metadataList>
<metadata name="creator">greenstone@cs.waikato.ac.nz</metadata>
<metadata name="public">true</metadata>

</metadataList>
<displayItemList>
<displayItem name=’name’ lang=’en’>Greenstone3 MG demo collection</displayItem>
<displayItem name=’description’ lang=’en’>This is a demonstration

collection for the Greenstone3 digital library software.</displayItem>
<displayItem name=’icon’ lang=’en’>gs3mgdemo.gif</displayItem>
<displayItem name=’smallicon’ lang=’en’>gs3mgdemo_sm.gif</displayItem>

</displayItemList>
<search>
<index name="ste">

<displayItem name=’name’ lang="en">chapters</displayItem>
<displayItem name=’name’ lang="fr">chapitres</displayItem>
<displayItem name=’name’ lang="es">captulos</displayItem>

</index>
[... more indexes ...]
<format>

<gsf:template match="documentNode"><td valign=’top’>
<gsf:link><gsf:icon/></gsf:link></td><td><gsf:metadata name=’Title’/>

</td></gsf:template>
</format>

</search>
<browse>
<classifier name="CL1" horizontalAtTop=’true’>

<displayItem name=’name’ lang=’en’>Titles</displayItem>
</classifier>
[... more classifiers ...]
<classifier name="CL4">

<displayItem name=’name’ lang=’en’>HowTo</displayItem>
<format>

<gsf:template match="documentNode">

<gsf:link><gsf:metadata name=’Keyword’ />

</gsf:link></gsf:template>
</format>

</classifier>
</browse>
<display>
<format>

<gsf:option name="coverImages" value="false"/>
<gsf:option name="documentTOC" value="false"/>

</format>
</display>

</collectionConfig>

Figure 5: Sample collectionConfig.xml file

21

first example is a straight textual replacement. The second example uses dictionary
lookups. xxx will be replaced with the (language-dependent) value for key zzz in
resource bundle yyy. The third example uses metadata: xxx will be replaced by the
value of the yyy metadata for that document.

Appendix D.2 gives some examples that have been used for Greenstone2 col-
lections.

2.3.3 buildConfig.xml

The filebuildConfig.xml is produced by the collection building process. Gener-
ally it is not necessary to look at this file, but it can be useful in determining what
went wrong if the collection doesn’t appear quite the way it was planned.

It contains metadata and other information about the collection that can be de-
termined automatically, such as the number of documents in the collection. It also
includes a list ofServiceRack classes that are required to provide the services
that have been built into the collection. The serviceRack names are Java classes
that are loaded dynamically at runtime. Any information inside the serviceRack
element is specific to that service—there is no set format. Figure 6 shows an ex-
ample. This configuration file specifies that the collection should load up 3 Ser-
viceRacks:GS2Browse, GS2MGPPRetrieve andGS2MGPPSearch. The contents of
each<serviceRack> element are passed to the appropriate ServiceRack objects
for configuration. ThecollectionConfig.xml file content is also passed to the
ServiceRack objects at configure time—theformat and displayItem informa-
tion is used directly from thecollectionConfig.xml file rather than added into
buildConfig.xml during building. This enables formatting and metadata changes
in collectionConfig.xml to take effect in the collection without rebuilding being
necessary. However, as these files are cached, the collection needs to be reloaded
for the changes to appear in the library.

2.4 Formatting the collection

Part of collection design involves deciding how the collection should look. Green-
stone3 has a default ’look’ for a collection, so this is optional. However, the default
may not suit the purposes of some collections, so many parts to the look of a col-
lection can be determined by the collection designer.

In standard Greenstone3, the library is served to a web browser by a servlet,
and the HTML is generated using XSLT. XSLT templates are usedto format all
the parts of the pages. These templates can be overridden by including them in the
collectionConfig.xml file. Some commonly overridden templates are those for
formatting lists: search results list, classifier browsinghierarchies, and for parts of
the document display.

Real XSLT templates for formatting search results or classifier lists are quite
complicated, and not at all easy for a new user to write. For example, the following

22

<buildConfig>
<metadataList>
<metadata name="numDocs">11</metadata>
<metadata name="buildType">mgpp</metadata>

</metadataList>
<serviceRackList>
<serviceRack name="GS2Browse">

<indexStem name="gs2mgppdemo"/>
<classifierList>

<classifier name="CL1" content="Title"/>
<classifier name="CL2" content="Subject" />
<classifier name="CL3" content="Organization" />
<classifier name="CL4" content="Howto" />

</classifierList>
</serviceRack>
<serviceRack name="GS2MGPPRetrieve">

<indexStem name="gs2mgppdemo"/>
<defaultLevel name="Sec" />

</serviceRack>
<serviceRack name="GS2MGPPSearch">

<indexStem name="gs2mgppdemo"/>
<defaultLevel name="Sec" />
<levelList>

<level name="Sec" />
<level name="Doc" />

</levelList>
<fieldList>

<field shortname="ZZ" name="allfields" />
<field shortname="TX" name="text" />
<field shortname="DL" name="dls.Title" />
<field shortname="DS" name="dls.Subject" />
<field shortname="DO" name="dls.Organization" />

</fieldList>
<searchTypeList>

<searchType name="form" />
<searchType name="plain" />

</searchTypeList>
<indexOptionList>

<indexOption name="stemIndexes" value="3"/>
<indexOption name="maxnumeric" value="4"/>

</indexOptionList>
<defaultIndex name="idx" />
<indexList>

<index name="idx" />
</indexList>

</serviceRack>
</serviceRackList>

</buildConfig>

Figure 6: Sample buildConfig.xml file (gs2mgppdemo collection)

23

is a sample template for formatting a classifier list, to showKeyword metadata as
a link to the document.

<xsl:template match="documentNode" priority="2"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="collName"/>
<td><a href="{$library_name}?a=d&c={$collName}&

d={@nodeID}&dt={@docType}"><xsl:value-of
select="metadataList/metadata[@name=’Keyword’]"/>

</td>
</xsl:template>

To write this, the user would need to know that:

• the variable$library name exists,
• the collection name is passed in as a parameter calledcollName

• metadata for a document is found in a<metadataList> and that its form is
<metadata name="Keyword">the value</metadata>

• the arguments needed for the link to the document area, sa, c, d, a,

dt.

We can use XSLT to transform XML into XSLT. Greenstone3 provides a sim-
plified set of formatting commands, written in XML, which will be transformed
into proper XSLT. The user specifies a<gsf:template> for what they want to
format—these typically matchdocumentNode or classifierNode (for a node in a
classification hierarchy).

The template above can be represented as:

<gsf:template match=’documentNode’>
<td><gsf:link><gsf:metadata name=’Keyword’/></gsf:link></td>

</gsf:template>

Table 4 shows the set of’gsf’ (Greenstone Format) elements. If you have
come from a Greenstone2 background, Appendix D.1 shows Greenstone2 format
elements and their equivalents in Greenstone3 .

The<gsf:metadata> elements are used to output metadata values. The sim-
plest case is<gsf:metadata name=’Title’/>—this outputs the Title metadata
for the current document or section. Namespaces are important here: if the Title
metadata is in the Dublin Core (dc) namespace, then the element should look like
<gsf:metadata name=’dc.Title’/>. There are three other attributes for this el-
ement. The attributemultiple is used when there may be more than one value
for the selected metadata. For instance, one document may fall into several clas-
sification categories, and therefore may have multiple Subject metadata values.
Addingmultiple=’true’ to the<gsf:metadata> element will retrieve all values,
not just the first one. Multiple values are separated by commas by default. The
separator attribute is used to change the separating string. For example, adding
separator=’: ’ to the element will separate all values by a colon and a space.

24

Table 4: Format elements for GSF format language
Element Description
<gsf:text/> The document’s text
<gsf:link>...</gsf:link> The HTML link to the document itself
<gsf:link type=’document’>...
</gsf:link>

Same as above

<gsf:link type=’classifier’>...
</gsf:link>

A link to a classification node (use in classifierNode
templates)

<gsf:link type=’source’>...
</gsf:link>

The HTML link to the original file—set for doc-
uments that have been converted from e.g. Word,
PDF, PS

<gsf:icon/> An appropriate icon
<gsf:icon type=’document’/> same as above
<gsf:icon type=’classifier’/> bookshelf icon for classification nodes
<gsf:icon type=’source’/> An appropriate icon for the original file e.g. Word,

PDF icon
<gsf:metadata name=’Title’/> The value of a metadata element for the current doc-

ument or section, in this case, Title
<gsf:metadata name=’Title’
select=’select-type’
[separator=’y’ multiple=’true’]/>

A more extended selection of metadata values. The
select field can be one of those shown in Table 5.
There are two optional attributes: separator gives a
String that will be used to separate the fields, de-
fault is “, “, and if multiple is set to true, looks for
multiple values at each section.

<gsf:metadata name=’Date’
format=’formatDate’/>

The value of a metadata element for the current
document, formatted in some way. Current for-
matting options available are formatDate: turns
’20040201’ into ’01 February 2004’, and format-
Language: turns ’en’ into ’English’, both in a lan-
guage dependent manner.

<gsf:choose-metadata>
<gsf:metadata name=’metaA’/>
<gsf:metadata name=’metaB’/>
<gsf:metadata name=’metaC’/>
</gsf:choose-metadata>

A choice of metadata. Will select the first existing
one. the metadata elements can have the select, sep-
arator and multiple attributes like normal.

<gsf:switch preprocess=
’preprocess-type’>
<gsf:metadata name=’Title’/>
<gsf:when test=’test-type’
test-value=’xxx’>...</gsf:when>
<gsf:when test=’test-type’
test-value=’yyy’>...</gsf:when>
<gsf:otherwise>...</gsf:otherwise>
</gsf:switch>

switch on the value of a particular metadata - the
metadata is specified in gsf:metadata, has the same
attributes as normal.

25

Table 5: Select types for metadata format elements
Select Type Description
current The current section
parent The immediate parent section
ancestors All the parents back to the root (topmost) section
root The root or topmost section
siblings All the sibling sections
children The immediate child sections of the current section
descendants All the descendent sections

Sometimes you may want to display metadata values for sections other than the
current one. For example, in the mgppdemo collection, in a search list we display
the Titles of all the enclosing sections, followed by the Title of the current section,
all separated by semi-colons. The display ends up looking something like:Farming
snails 2; Starting out; Selecting your snails whereSelecting your snails is the Title
of the section in the results list, andFarming snails 2 andStarting out are the Titles
of the enclosing sections. Theselect attribute is used to display metadata for
sections other than the current one. Table 5 shows the options available for this
attribute. Theseparator attribute is used here also, to specify the separating text.

To get the previous metadata, the format statement would have the following
in it:

<gsf:metadata name=’Title’ select=’ancestors’ separator=’; ’/>;
<gsf:metadata name=’Title’/>

The<gsf:choose-metadata>element selects the first available metadata value
from the list of options.

<gsf:choose-metadata>
<gsf:metadata name=’dc.Title’/>
<gsf:metadata name=’dls.Title’/>
<gsf:metadata name=’Title’/>

</gsf:choose-metadata>

This will display dls.Title if available, otherwise it willuse dc.Title if available,
otherwise it will use the Title metadata. If there are no values for any of these
metadata elements, then nothing will be displayed.

The<gsf:switch> element allows different formatting depending on the value
of a specified metadata element. For example, the following switch statement could
be used to display a different icon for each document in a listdepending on which
organization it came from.

<gsf:switch preprocess=’toLower;stripSpace’>
<gsf:metadata name=’Organization’/>
<gsf:when test=’equals’ test-value=’bostid’>

<!-- output BOSTID image --></gsf:when>
<gsf:when test=’equals’ test-value=’worldbank’>

<!-- output world bank image --></gsf:when>
<gsf:otherwise><!-- output default image--></gsf:otherwise>

</gsf:switch>

26

Table 6: Formatting options
option name values description
coverImages true, false whether or not to display cover images

for documents
documentTOC true, false whether or not to display the table of

contents for the document

Preprocessing of the metadata value is optional. The preprocess types are
toLower (make the value lowercase),toUpper (make the value uppercase),stripSpace

(removes any whitespace from the value). These operations are carried out on the
value of the selected metadata before the test is carried out. Multiple processing
types can be specified, separated by ; and they will be appliedin the order specified
(from left to right).

Each option specifies a test and a test value. Test values are just text. Tests
includestartsWith, contains, exists, equals, endsWith. Exists doesn’t need
a test value. Having an otherwise option ensures that something will be displayed
even when none of the tests match.

If none of the gsf elements meets your needs for formatting, XSLT can be en-
tered directly into the format element, giving the collection designer full flexibility
over how the collection appears.

The collection specific templates are added into the configuration filecollectionConfig.xml.
Any templates found in the XSLT files can be overridden. The important part to
adding templates into the configuration file is determining where to put them. For-
matting templates cannot go just anywhere—there are standard places for them.
Figure 7 shows the positions that templates can occur.

There are also formatting instructions that are not templates but are options.
These are described in Table 6. They are entered into the configuration file like
<gsf:option name=’coverImages’ value=’false’/>

Note, format templates are added into the XSLT files before transforming,
while the options are added into the page source, and used in tests in the XSLT.

2.4.1 Changing the service text strings

Each collection has a set of services which are the access points for the information
in the collection. Each service has a set of text strings which are used to display
it. These include name, description, the text on the submit button, and names and
descriptions of all the parameters to the service.

These text strings are found in.properties files, in$GSDL3HOME/WEB-INF/classes.
The names of the files are based on class names. Subclasses candefine their own
properties, or can use their parent class ones. For example,AbstractSearch de-
fines strings for theTextQuery service, inAbstractSearch.properties. GS2MGSearch
just uses these default ones, so doesn’t need its own properties file.

A particular collection can override the properties for anyservice. For example,
if a collection uses theGS2MGSearch service rack (look in thebuildConfig.xml

27

<collectionConfig>
<metadataList/>
<displayItemList/>
<search>
<format> <!--Put here templates related to searching and

the query page. The common one is the documentNode
template -->

<gsf:template match=’documentNode’>...</gsf:template>
</format>

</search>
<browse>
<classifier name=’xx’>

<format><!-- put here templates related to formating a
particular classifier page. Common ones are documentNode
and classifierNode templates-->
<gsf:template match=’documentNode’>...</gsf:template>
<gsf:template match=’classifierNode’>...</gsf:template>
<gsf:template match=’classifierNode’ mode=’horizontal’>...
</gsf:template>

</format>
</classifier>
<classifier>...</classifier>
<format><!-- formatting for all the classifiers. these will

be overridden by any classifier specific formatting
instructions --></format>

</browse>
<display>
<format><!-- here goes any formatting relating to the display

of the documents. These are generally named templates,
and format options -->

<gsf:template name=’documentContent’>...</gsf:template>
<gsf:option name=’TOC’ value=’true’/>

</format>
</display>

</collectionConfig>

Figure 7: Places for format statements

28

file for a list of service racks used), and the collection builder wants to change the
text associated with this service, they can put aGS2MGSearch.properties file in
the resources directory of the collection. After a reconfigure of the collection, this
will be used in preference to the one in the default resourcesdirectory.

2.5 Customizing the interface

Format statements in the collection configuration files provide a way to change
small parts of the collection display. For large scale customizations to a collection,
or ones that apply to a site as a whole, a second mechanism is available. The
interface is defined by a set of XSLT files that transform the page data into HTML.
Any of these files can be overridden to provide specialized display, on a site or
collection basis.

The first section looks at customizing the existing interface, while the second
section looks at defining a whole new interface. The last section describes how to
add a new language translation of an interface.

2.5.1 Modifying an existing interface

Most of an interface is defined by XSLT files, which are stored in $GSDL3HOME/-

interfaces/interface-name/transform. These can be changed and the changes
will take effect straight away. If changes only apply to certain collections or sites,
not everything that uses the interface, you can override some of the files by putting
new ones in a different place. XSLT files are looked for in the following order:
collection, site, interface, default interface. (This currently only apples to sites,
and therefore collections, that reside in the same Greenstone installation as the
interface.)

Sites and collections can have a transform directory, whichis where customized
XSLT files should go. Any XSLT files in here will be used in preference to the
interface files when using this collection. For example, if you want to have a
completely different layout for the about page of a collection, you can put a new
about.xsl file into the collection’stransform directory, and this will be used in-
stead. This is what we do for the Gutenberg sample collection.

This also applies to files that are included from other XSLT files. For example
thequery.xsl for the query pages includes a file calledquerytools.xsl. To have
a particular site show a different query interface either ofthese files may need to
be modified. Creating a new version of either of these and putting it in the site
transform directory will work. Either the newquery.xsl will include the default
querytools.xsl, or the defaultquery.xsl will include the newquerytools.xsl.
Thexsl:include directives are preprocessed by the Java code and full paths added
based on availability of the files, so that the correct one is used.

Note that you cannot include a file with the same name as the including file.
For examplequery.xsl cannot includequery.xsl (it is tempting to want to do

29

this if you just want to change one template for a particular file, and then include
the default. but you cant).

You can add the argumento=xml to any URL and you wil be returned the XML
before transformation by a stylesheet. This shows you the XML page source. It
can be useful when you are trying to write some new XSLT statements.

2.5.2 Defining a new interface

A new interface may be needed if different instantiations ofthe library require
different interfaces, or different developers want their own look and feel. Creating
a new interface will allow modifications to be made while leaving the original one
intact.

A new interface needs a directory in$GSDL3HOME/interfaces, the name of
this directory becomes the interface name. Inside, it needsimages andtransform
directories, and aninterfaceConfig.xml file. The interfaceConfig.xml file
may specify a base interface, in which case the new interfaceonly needs to define
XSLT for the parts that are different. Otherwise, it will need a full set of XSLT
files.

To use a new interface, the$GSDL3HOME/WEB-INF/web.xml file must be edited:
either change the interface that a current servlet instanceis using, or add another
servlet instantiation to the file (see Section 1.4 or Appendix B). The Tomcat server
must be restarted for this to take effect.

2.5.3 Changing the interface language

The interface language can be changed by going to the preferences page, and
choosing a language from the list, which includes all languages into which the
interface has been translated.

It is easy to add a new interface language to Greenstone . Language specific
text strings are separated out from the rest of the system to allow for easy incorpo-
ration of new languages. These text strings are contained inJava resource bundle
properties files. These are plain text files consisting of key-value pairs, located in
$GSDL3HOME/WEB-INF/classes. Each interface has one namedinterface name.properties

(where’name’ is the interface name, for example,interface default.properties,
or interface gs2.properties). Each service class has one with the same name
as the class (e.g.GS2Search.properties). To add another language all of the
base.properties files must be translated. The translated files keep the same
names, but with a language extension added. For example, a French version of
interface default.propertieswould be namedinterface default fr.properties.

Keys will be looked up in the properties file closest to the specified language.
For example, if languagefr CA was specified (French language, country Canada),
and the default locale wasen GB, Java would look at properties files in the fol-
lowing order, until it found the key:XXX fr CA.properties, XXX fr.properties,
XXX en GB.properties, thenXXX en.properties, and finally the defaultXXX.properties.

30

These new files are available straight away—to use the new language, add e.g.
l=fr to the arguments in the URL. To get Greenstone to add it in to the list of
languages on the preferences page, an entry needs to be addedinto the languages
list in theinterfaceConfig.xml file (see Section 1.6.2). Modification of this file
requires a restart of the Tomcat server for the changes to be recognized.

31

Library
Servlet

Receptionist

MessageRouter

Collection
demoTextQuery

Service

MetadataRetrieve
Service

Query
Action

Page
Action

Action
Process

Action
Browse

Service
ResourceRetrieve

CollectionFormation
ServiceCluster

ClassifierBrowse
Service

ClassifierBrowse
Service

MetadataRetrieve
Service

Service
ResourceRetrieve

ImportCollection
Service

BuildCollection
Service

ActivateCollection
Service

AddDocument
Service

TextQuery
Service

Action
Document

GS2MGPPRetrieve

GS2MGPPSearch

Collection
fao

GS2Browse
GS2MGPPRetrieve

GS2Browse

GS2Construct

Service
PhindApplet

PhindPhraseBrowse

GS2MGPPSearch

Figure 8: A simple stand-alone site.

3 Developing Greenstone3: Run-time system

[TODO: rewrite this section
runtime object structure diagram. describe the modules.
class hierarchy,
directory structure and where everything lives
message format.
overall description of message passing sequence.
configuration process - start up and runtime

page generation
]

3.1 Overview of modules??

A Greenstone3 ’library’ system consists of many components: MessageRouter,
Receptionist, Actions, Collections, ServiceRacks etc. Figure 8 shows how they fit
together in a stand-alone system. The top left part is concerned with displaying
the data, while the bottom right part is the collection data serving part. The two
sides communicate through the MessageRouter. There is a one-to-one correspon-
dence between modules and Java classes, with the exception of services: for cod-
ing and/or run-time efficiency reasons, several Service modules may be grouped
together into one ServiceRack class.

MessageRouter: this is the central module for a site. It controls the site, loading
up all the collections, clusters, communicators needed. All messages pass through
the MessageRouter. Communication between remote sites is always done between

32

MessageRouters, one for each site.
Collection and ServiceCluster: these are very similar, and group a set of ser-

vices into a conceptual group.. They both provide some metadata about the col-
lection/cluster, and a list of services. The services are provided by ServiceRack
objects that the collection/cluster loads up. A Collectionis a specific type of Ser-
viceCluster. A ServiceCluster groups services that are related conceptually, e.g. all
the building services may be part of a cluster. What is part ofa cluster is specified
by the site configuration file. A Collection’s services are grouped by the fact that
they all operate on some common data—the documents in the collection. Func-
tionally Collection and ServiceCluster are very similar, but conceptually, and to
the user, they are quite different.

Service: these provide the core functionality of the system e.g. searching, re-
trieving documents, building collections etc. One or more may be grouped into a
single Java class (ServiceRack) for code reuse, or to avoid instantiating the same
objects several times. For example, MGPP searching services all need to have the
index loaded into memory.

Communicator/Server: these facilitate communication between remote mod-
ules. For example, if you want MR1 to talk to MR2, you need a Communicator-
Server pair. The Server sits on top of MR2, and MR1 talks to theCommunicator.
Each communication type needs a new pair. So far we have only been using SOAP,
so we have a SOAPCommunicator and a SOAPServer.

Receptionist: this is the point of contact for the ’front end’. Its core function-
ality involves routing requests to the Actions, but it may domore than that. For
example, a Receptionist may: modify the request in some way before sending it to
the appropriate Action; add some data to the page responses that is common to all
pages; transform the response into another form using XSLT.There is a hierarchy
of different Receptionist types, which is described in Section 3.9.3.

Actions: these do the job of creating the ’pages’. There is a different action for
each type of page, for example PageAction handles semi-static pages, QueryAc-
tion handles queries, DocumentAction displays documents.They know a little bit
about specific service types. Based on the ’CGI’ arguments passed in to them, they
construct requests for the system, and put together the responses into data for the
page. This data is returned to the Receptionist, which may transform it to HTML.
The various actions are described in more detail in Section 3.9.

3.2 Start up configuration

We use the Tomcat web server, which operates either stand-alone in a test mode
or in conjunction with the Apache web server. The GreenstoneLibraryServlet
class is loaded by Tomcat and the servlet’sinit() method is called. Each time a
get/put/post (etc.) is used, a new thread is started anddoGet()/doPut()/doPost()

(etc.) is called.
Theinit() method creates a new Receptionist and a new MessageRouter. De-

fault classes (DefaultReceptionist, MessageRouter) are used unless subclasses have

33

been specified in the servlet initiation parameters (see Section 1.4). The appropri-
ate system variables are set for each object (interface name, site name, etc.) and
thenconfigure() is called on both. The MessageRouter handle is passed to the
Receptionist. The servlet then communicates only with the Receptionist, not with
the MessageRouter.

The Receptionist reads in theinterfaceConfig.xml file (see Section 1.6.2),
and loads up all the different Action classes. Other Actionsmay be loaded on
the fly as needed. Actions are added to a map, with shortnames for keys. Eg the
QueryAction is added with key ’q’. The Actions are passed theMessageRouter ref-
erence too. If the Receptionist is a TransformingReceptionist, a mapping between
shortnames and XSLT file names is also created.

The MessageRouter reads in its site configuration filesiteConfig.xml (see
Section 1.6.1). It creates a module map that maps names to objects. This is used
for routing the messages. It also keeps small chunks of XML—serviceList, collec-
tionList, clusterList and siteList. These are part of what get returned in response to
a describe request (see Section 3.4.).

Each ServiceRack specified in the configuration file is created, then queried
for its list of services. Each service name is added to the map, pointing to the
ServiceRack object. Each service is also added to the serviceList. After this stage,
ServiceRacks are transparent to the system, and each service is treated as a separate
module.

ServiceClusters are created and passed the<serviceCluster> element for
configuration. They are added to the map as is, with the cluster name as a key.
A serviceCluster is also added to the serviceClusterList.

For each site specified, the MessageRouter creates an appropriate type of Com-
municator object. Then it tries to get the site description.If the server for the re-
mote site is up and running, this should be successful. The site will be added to the
mapping with its site name as a key. The site’s collections, services and clusters
will also be added into the static xml lists. If the server forthe remote site is not
running, the site will not be included in the siteList or module map. To try again
to access the site, either Tomcat must be restarted, or a run-time reconfigure-site
command must be sent (see Section 1.7).

The MessageRouter also looks inside the site’scollect directory, and loads
up a Collection object for each valid collection found. If acollectionInit.xml
file is present, a subclass of Collection may be used. The Collection object reads
its buildConfig.xml andcollectionConfig.xml files, determines the metadata,
and loads ServiceRack classes based on the names specified inbuildConfig.xml.
The<serviceRack> XML element is passed to the object to be used in configura-
tion. ThecollectionConfig.xml contents are also passed in to the ServiceRacks.
Any format or display information that the services need must be extracted from
the collection configuration file. Collection objects are added to the module map
with their name as a key, and also a collection element is added into the collection-
List XML.

34

3.3 Message passing

There are two types of messages used by the system: external and internal mes-
sages. All messages have an enclosing<message> element, which contains either
one or more requests, or one or more responses. In the following descriptions, the
message element is not shown, but is assumed to be present. Action in Greenstone3
is originated by a request coming in from the outside. In the standard web-based
Greenstone, this comes from a servlet and is passed into the Receptionist. This
“external” type request is a request for a page of data, and contains a represen-
tation of the CGI style arguments. A page of XML is returned, which can be in
HTML format or other depending on the output parameter of therequest.

Messages inside the system (“internal” messages) all follow the same basic
format: message elements contain multiple request elements, or multiple response
elements. Messaging is all synchronous. The same number of responses as re-
quests will be returned. Currently all requests are independent, so any requests can
be combined into the same message, and they will be answered separately, with
their responses being sent back in a single message.

When a page request (external request) comes in to the Receptionist, it looks
at the action attribute and passes the request to the appropriate Action module.
The Action will fire one or more internal requests to the MessageRouter, based
on the arguments. The data is gathered into a response, whichis returned to the
Receptionist. The page that the receptionist returns contains the original request,
the response from the action and other info as needed (depends on the type of
Receptionist). The data may be transformed in some way — for the Greenstone
servlet we transform using XSLT to generate HTML pages.

Actions send internal style messages to the MessageRouter.Some can be an-
swered by it, others are passed on to collections, and maybe on to services. Internal
requests are for simple actions, such as search, retrieve metadata, retrieve document
text There are different internal request types: describe,process, system, format,
status. Process requests do the actual work of the system, while the other types
get auxiliary information. The format of the requests and responses for each in-
ternal request type are described in the following sections. External style requests,
and their page responses are described in the Section about page generation (Sec-
tion 3.9).

3.4 ’describe’-type messages

The most basic of the internal standard requests is “describe-yourself”, which can
be sent to any module in the system. The module responds with asemi-predefined
piece of XML, making these requests very efficient. The response is predefined
apart from any language-specific text strings, which are puttogether as each request
comes in, based on the language attribute of the request.

<request lang=’en’ type=’describe’ to=’’/>

35

If the to field is empty, a request is answered by the MessageRouter. Anexample
response from a MessageRouter might look like this:

<response lang=’en’ type=’describe’>
<serviceList/>
<siteList>

<site name=’org.greenstone.gsdl1’
address=’http://localhost:8080/greenstone3/services/localsite’
type=’soap’ />

</siteList>
<serviceClusterList>

<serviceCluster name="build" />
</serviceClusterList>
<collectionList>

<collection name=’org.greenstone.gsdl1/
org.greenstone.gsdl2/fao’ />

<collection name=’org.greenstone.gsdl1/demo’ />
<collection name=’org.greenstone.gsdl1/fao’ />
<collection name=’myfiles’ />

</collectionList>
</response>

This MessageRouter has no individual site-wide services (an empty<serviceList>),
but has a service cluster called build (which provides collection importing and
building functionality). It communicates with one site,org.greenstone.gsdl1.
It is aware of four collections. One of these,myfiles, belongs to it; the other three
are available through the external site. One of those collections is actually from a
further external site.

It is possible to ask just for a specific part of the information provided by a
describe request, rather than the whole thing. For example,these two messages get
thecollectionList and thesiteList respectively:

<request lang=’en’ type=’describe’ to=’’>
<paramList>

<param name=’subset’ value=’collectionList’/>
</paramList>

</request>

<request lang=’en’ type=’describe’ to=’’>
<paramList>

<param name=’subset’ value=’siteList’/>
</paramList>

</request>

Subset options for the MessageRouter includecollectionList, serviceClusterList,
serviceList, siteList.

When a collection or service cluster is asked to describe itself, what is returned
is a list of metadata, some display elements, and a list of services. For example,
here is such a message, along with a sample response.

<request lang=’en’ type=’describe’ to=’mgppdemo’/>

36

<response from="mgppdemo" type="describe">
<collection name="mgppdemo">

<displayItem lang="en" name="name">greenstone mgpp demo
</displayItem>
<displayItem lang="en" name="description">This is a
demonstration collection for the Greenstone digital
library software. It contains a small subset (11 books)
of the Humanity Development Library. It is built with
mgpp.</displayItem>

<displayItem lang="en" name="icon">mgppdemo.gif</displayItem>
<serviceList>
<service name="DocumentStructureRetrieve" type="retrieve" />
<service name="DocumentMetadataRetrieve" type="retrieve" />
<service name="DocumentContentRetrieve" type="retrieve" />
<service name="ClassifierBrowse" type="browse" />
<service name="ClassifierBrowseMetadataRetrieve"

type="retrieve" />
<service name="TextQuery" type="query" />
<service name="FieldQuery" type="query" />
<service name="AdvancedFieldQuery" type="query" />
<service name="PhindApplet" type="applet" />

</serviceList>
<metadataList>
<metadata name="creator">greenstone@cs.waikato.ac.nz</metadata>
<metadata name="numDocs">11</metadata>
<metadata name="buildType">mgpp</metadata>
<metadata name="httpPath">http://kanuka:8090/greenstone3/sites/

localsite/collect/mgppdemo</metadata>
</metadataList>

</collection>
</response>

Subset options for a collection or serviceCluster includemetadataList, serviceList,
anddisplayItemList.

This collection provides many typical services. Notice howthis response lists
the services available, while the collection configurationfile for this collection
(Figure 5) described serviceRacks. Once the service racks have been configured,
they become transparent in the system, and only services arereferred to. There are
three document retrieval services, for structural information, metadata, and con-
tent. The Classifier services retrieve classification structure and metadata. These
five services were all provided by the GS2MGPPRetrieve ServiceRack. The three
query services were provided by GS2MGPPSearch serviceRack, and provide dif-
ferent kinds of query interface. The last service, PhindApplet, is provided by the
PhindPhraseBrowse serviceRack and is an applet service.

A describe request sent to a service returns a list of parameters that the service
accepts and some display information, (and in future may describe the content type
for the request and response). Subset options for the request includeparamList
anddisplayItemList.

Parameters can be in the following formats:

37

<param name=’xxx’ type=’integer|boolean|string|invisible’ default=’yyy’/>
<param name=’xxx’ type=’enum_single|enum_multi’ default=’aa’/>

<option name=’aa’/><option name=’bb’/>...
</param>
<param name=’xxx’ type=’multi’ occurs=’4’>
<param .../>
<param .../>

</param>

If no default is specified, the parameter is assumed to be mandatory. Here are
some examples of parameters:

<param name=’case’ type=’boolean’ default=’0’/>

<param name=’maxDocs’ type=’integer’ default=’50’/>

<param name=’index’ type=’enum’ default=’dtx’>
<option name=’dtx’/>
<option name=’stt’/>
<option name=’stx’/>

<param>

<!-- this one is for the text box and field list for the
simple field query-->
<param name=’simpleField’ type=’multi’ occurs=’4’>

<param name=’fqv’ type=’string’/>
<param name=’fqf’ type=’enum_single’>

<option name=’TI’/><option name=’AU’/><option name=’OR’/>
</param>

</param>

The type attribute is used to determine how to display the parameters on a web
page or interface. For example, a string parameter may result in a text entry box,
a boolean an on/off button, enumsingle/enummulti a drop-down menu, where
one or many items, respectively, can be selected. A multi-type parameter indicates
that two or more parameters are associated, and should be displayed appropriately.
For example, in a field query, the text box and field list shouldbe associated. The
occurs attribute specifies how many times the parameter should be displayed on the
page. Parameters also come with display information: all the text strings needed to
present them to the user. These include the name of the parameter and the display
values for any options. These are included in the above parameter descriptions in
the form of<displayItem> elements.

A service description also contains some display information—this includes
the name of the service, and the text for the submit button.

Here is a sample describe request to the FieldQuery service of collection mgp-
pdemo, along with its response. The parameters in this example include their dis-
play information. Figure 9 shows an example HTML search formthat may be
generated from this describe response.

<request lang="en" to="mgppdemo/FieldQuery" type="describe" />

38

<response from="mgppdemo/FieldQuery" type="describe">
<service name="FieldQuery" type="query">

<displayItem name="name">Form Query</displayItem>
<displayItem name="submit">Search</displayItem>
<paramList>
<param default="Doc" name="level" type="enum_single">

<displayItem name="name">Granularity to search at</displayItem>
<option name="Doc">
<displayItem name="name">Document</displayItem>

</option>
<option name="Sec">
<displayItem name="name">Section</displayItem>

</option>
<option name="Para">
<displayItem name="name">Paragraph</displayItem>

</option>
</param>
<param default="1" name="case" type="boolean">

<displayItem name="name">Turn casefolding </displayItem>
<option name="0">
<displayItem name="name">off</displayItem>

</option>
<option name="1">
<displayItem name="name">on</displayItem>

</option>
</param>
<param default="1" name="stem" type="boolean">

<displayItem name="name">Turn stemming </displayItem>
<option name="0">
<displayItem name="name">off</displayItem>

</option>
<option name="1">
<displayItem name="name">on</displayItem>

</option>
</param>
<param default="10" name="maxDocs" type="integer">

<displayItem name="name">Maximum documents to return
</displayItem>

</param>
<param name="simpleField" occurs="4" type="multi">

<displayItem name="name"></displayItem>
<param name="fqv" type="string">
<displayItem name="name">Word or phrase </displayItem>

</param>
<param default="ZZ" name="fqf" type="enum_single">
<displayItem name="name">in field</displayItem>
<option name="ZZ">

<displayItem name="name">allfields</displayItem>
</option>
<option name="TX">

<displayItem name="name">text</displayItem>
</option>
<option name="TI">

39

Figure 9: The previous query service describe response as displayed on the search
page.

<displayItem name="name">Title</displayItem>
</option>
<option name="SU">

<displayItem name="name">Subject</displayItem>
</option>
<option name="ORG">

<displayItem name="name">Organization</displayItem>
</option>
<option name="SO">

<displayItem name="name">Source</displayItem>
</option>

</param>
</param>

</paramList>
</service>

</response>

A describe request to an applet type service returns the applet HTML element:
this will be embedded into a web page to run the applet.

<request type=’describe’ to=’mgppdemo/PhindApplet’/>

<response type=’describe’>
<service name=’PhindApplet’ type=’query’>

<applet ARCHIVE=’phind.jar, xercesImpl.jar, gsdl3.jar,
jaxp.jar, xml-apis.jar’

CODE=’org.greenstone.applet.phind.Phind.class’
CODEBASE=’lib/java’
HEIGHT=’400’ WIDTH=’500’>

<PARAM NAME=’library’ VALUE=’’/>
<PARAM NAME=’phindcgi’ VALUE=’?a=a&sa=r&sn=Phind’/>

40

<PARAM NAME=’collection’ VALUE=’mgppdemo’ />
<PARAM NAME=’classifier’ VALUE=’1’ />
<PARAM NAME=’orientation’ VALUE=’vertical’ />
<PARAM NAME=’depth’ VALUE=’2’ />
<PARAM NAME=’resultorder’ VALUE=’L,l,E,e,D,d’ />
<PARAM NAME=’backdrop’ VALUE=’interfaces/default/>
images/phindbg1.jpg’/>
<PARAM NAME=’fontsize’ VALUE=’10’ />
<PARAM NAME=’blocksize’ VALUE=’10’ />
The Phind java applet.

</applet>
<displayItem name="name">Browse phrase hierarchies</displayItem>

</service>
</response>

Note that the library parameter has been left blank. This is because library
refers to the current servlet that is running and the name is not necessarily known
in advance. So either the applet action or the Receptionist must fill in this parameter
before displaying the HTML.

3.5 ’system’-type messages

“System” requests are used to tell a MessageRouter, Collection or ServiceCluster
to update its cached information and activate or deactivateother modules. For
example, the MessageRouter has a set of Collection modules that it can talk to. It
also holds some XML information about those collections—this is returned when
a request for a collection list comes in. If a collection is deleted or modified, or
a new one created, this information may need to change, and the list of available
modules may also change. Currently these requests are initiated by particular CGI
requests (see Section 1.7).

The basic format of a system request is as follows:

<request type=’system’ to=’’>
<system .../>

</request>

One or more actual requests are specified in system elements.The following
are examples:

<system type=’configure’ subset=’’/>
<system type=’configure’ subset=’collectionList’/>
<system type=’activate’ moduleType=’collection’ moduleName=’demo’/>
<system type=’deactivate’ moduleType=’site’ moduleName=’site1’/>

The first request reconfigures the whole site—the MessageRouter goes through
its whole configure process again. The second request just reconfigures the collectionList—
the MessageRouter will delete all its collection information, and re-look through
the collect directory and reload all the collections again.The third request is to
activate collection demo. This could be a new collection, ora reactivation of an old

41

one. If a collection module already exists, it will be deleted, and a new one loaded.
The final request deactivates the site site1—this removes the site from the siteList
and module map, and also removes any of that sites collections/services from the
static lists.

A response just contains a status message5, for example:

<status>MessageRouter reconfigured successfully</status>
<status>Error on reconfiguring collectionList</status>
<status>collection:demo activated</status>
<status>site:site1 deactivated</status>

System requests are mainly answered by the MessageRouter. However, Col-
lections and ServiceClusters will respond to a subset of these requests.

3.6 ’format’-type messages

Collection designers are able to specify how their collection looks to a certain
degree. They can specify format statements for display thatwill apply to the results
of a search, the display of a document, entries in a classification hierarchy, for
example. This info is generally service specific. All services respond to a format
request, where they return any service specific formatting information. A typical
request and response looks like this:

<request lang="en" to="mgppdemo/FieldQuery" type="format" />

<response from="mgppdemo/FieldQuery" type="format">
<format>

<gsf:template match="documentNode"><td><gsf:link>
<gsf:metadata name="Title" />(<gsf:metadata name="Source" />)
</gsf:link></td>

</gsf:template>
</format>

</response>

The actual format statements are described in Section 2.4. They are templates
written directly in XSLT, or in GSF (GreenStone Format) which is a simple XML
representation of the more complicated XSLT templates. GSF-style format state-
ments need to be converted to proper XSLT. This is currently done by the Recep-
tionist (but may be moved to an ActionHelper): the format XMLis transformed to
XSLT using XSLT with the configformat.xsl stylesheet.

3.7 ’status’-type messages

These are only used with process-type services, which are those where a request is
sent to start some type of process (see Section 3.8.4). An initial ’process’ request
to a ’process’ service generates a response which states whether the process had
successfully started, and whether its still continuing. Ifthe process is not finished,

5TODO: add in error/status codes

42

Table 7: Status codes currently used in Greenstone3
code name code meaning

value
SUCCESS 1 the request was accepted, and the process was completed
ACCEPTED 2 the request was accepted, and the process has beenstarted, but

it is not completed yet
ERROR 3 there was an error and the process was stopped
CONTINUING 10 the process is still continuing
COMPLETED 11 the process has finished
HALTED 12 the process has stopped
INFO 20 just an info message that doesn’t imply anything

status requests can be sent repeatedly to the service to pollthe status, using the pid
to identify the process. Status codes are used to identify the state of a process. The
values used at the moment are listed in Table 76.

The following shows an example status request, along with two responses, the
first a ’OK but continuing’ response, and the second a ’successfully completed’
response. The content of the status elements in the two responses is the output
from the process since the last status update was sent back.

<request lang="en" to="build/ImportCollection" type="status">
<paramList>

<param name="pid" value="2" />
</paramList>

</request>

<response from="build/ImportCollection">
<status code="2" pid="2">Collection construction: import collection.

command = import.pl -collectdir /research/kjdon/home/greenstone3/web/sites/
localsite/collect test1

starting
</status>

</response>

<response from="build/ImportCollection">
<status code="11" pid="2">RecPlug: getting directory

/research/kjdon/home/greenstone3/web/sites/localsite/collect/test1/import
WARNING - no plugin could process /.keepme

Import Complete

* 1 document was considered for processing

* 0 were processed and included in the collection

* 1 was rejected. See /research/kjdon/home/greenstone3/web/sites/
localsite/collect/test1/etc/fail.log for a list of rejected documents

Success
</status>

</response>

6A more standard set of codes should probably be used, for example, the HTTP codes

43

3.8 ’process’-type messages

Process requests and responses provide the major functionality of the system—
these are the ones that do the actual work. The format dependson the service they
are for, so I’ll describe these by service.

Query type services TextQuery, FieldQuery, AdvancedFieldQuery (GS2MGSearch,
GS2MGPPSearch), TextQuery (LuceneSearch) The main type ofrequests in the
system are for services. There are different types of services, currently:query,
browse, retrieve, process, applet, enrich. Query services do some kind of
search and return a list of document identifiers. Retrieve services can return the
content of those documents, metadata about the documents, or other resources.
Browse is for browsing lists or hierarchies of documents. Process type services are
those where the request is for a command to be run. A status code will be returned
immediately, and then if the command has not finished, an update of the status can
be requested. Applet services are those that run an applet. Enrich services take a
document and return the document with some extra markup added.

Other possibilities include transform, extract, accrete.These types of service
generally enhance the functionality of the first set. They may be used during col-
lection formation: ’accrete’ documents by adding them to a collection, ’transform’
the documents into a different format, ’extract’ information or acronyms from the
documents, ’enrich’ those documents with the information extracted or by adding
new information. They may also be used during querying: ’transform’ a query be-
fore using it to query a collection, or ’transform’ the documents you get back into
an appropriate form.

The basic structure of a service ’process’ request is as follows:

<request lang=’en’ type=’process’ to=’demo/TextQuery’>
<paramList/>
other elements...

</request>

The parameters are name-value pairs corresponding to parameters that were
specified in the service description sent in response to a describe request.

<param name=’case’ value=’1’/>
<param name=’maxDocs’ value=’34’/>
<param name=’index’ value=’dtx’/>

Some requests have other content—for document retrieval, this would be a list
of document identifiers to retrieve. For metadata retrieval, the content is the list of
documents to retrieve metadata for.

Responses vary depending on the type of request. The following sections look
at the process type requests and responses for each type of service.

44

3.8.1 ’query’-type services

Responses to query requests contain a list of document identifiers, along with some
other information, dependent on the query type. For a text query, this includes term
frequency information, and some metadata about the result.For instance, a text
query on ’snail farming’, with the parameter ’maxDocs=10’ might return the first
10 documents, and one of the query metadata items would be thetotal number of
documents that matched the query.7

The following shows an example query request and its response.
Find at most 10 Sections in the mgppdemo collection, containing the word

snail (stemmed), returning the results in ranked order:

<request lang=’en’ to="mgppdemo/TextQuery" type="process">
<paramList>

<param name="maxDocs" value="10"/>
<param name="queryLevel" value="Section"/>
<param name="stem" value="1"/>
<param name="matchMode" value="some"/>
<param name="sortBy" value="1"/>
<param name="index" value="t0"/>
<param name="case" value="0"/>
<param name="query" value="snail"/>

</paramList>
</request>

<response from="mgppdemo/TextQuery" type="process">
<metadataList>

<metadata name="numDocsMatched" value="59" />
</metadataList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"
docType=’hierarchy’ nodeType="leaf" />

<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12"
docType=’hierarchy’ nodeType="leaf" />

<documentNode nodeID="HASH010f073f22033181e206d3b7.1"
docType=’hierarchy’ nodeType="interior" />

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.2.2"
docType=’hierarchy’ nodeType="leaf" />

...
</documentNodeList>
<termList>

<term field="" freq="454" name="snail" numDocsMatch="58" stem="3">
<equivTermList>

<term freq="" name="Snail" numDocsMatch="" />
<term freq="" name="snail" numDocsMatch="" />
<term freq="" name="Snails" numDocsMatch="" />
<term freq="" name="snails" numDocsMatch="" />

</equivTermList>
</term>

</termList>
</response>

7no metadata about the query result is returned yet.

45

The list of document identifiers includes some information about document
type and node type. Currently, document types includesimple, paged andhierarchy.
simple is for single section documents, i.e. ones with no sub-structure. paged is
documents that have a single list of sections, whilehierarchy type documents
have a hierarchy of nested sections. Forpaged andhierarchy type documents,
the node type identifies whether a section is the root of the document, an internal
section, or a leaf.

The term list identifies, for each term in the query, what its frequency in the
collection is, how many documents contained that term, and alist of its equivalent
terms (if stemming or casefolding was used).

3.8.2 ’browse’-type services

Browse type services are used for classification browsing. The request consists of
a list of classifier identifiers, and some structure parameters listing what structure
to retrieve.

<request lang="en" to="mgppdemo/ClassifierBrowse" type="process">
<paramList>

<param name="structure" value="ancestors" />
<param name="structure" value="children" />

</paramList>
<classifierNodeList>

<classifierNode nodeID="CL1.2" />
</classifierNodeList>

</request>

<response from="mgppdemo/ClassifierBrowse" type="process">
<classifierNodeList>

<classifierNode nodeID="CL1">
<nodeStructure>

<classifierNode nodeID="CL1">
<classifierNode nodeID="CL1.2">

<classifierNode nodeID="CL1.2.1" />
<classifierNode nodeID="CL1.2.2" />
<classifierNode nodeID="CL1.2.3" />
<classifierNode nodeID="CL1.2.4" />
<classifierNode nodeID="CL1.2.5" />

</classifierNode>
</classifierNode>

</nodeStructure>
</classifierNode>

</classifierNodeList>
</response>

Possible values for structure parameters areancestors, parent, siblings,
children, descendants. The response gives, for each identifier in the request,
a <nodeStructure> element with all the requested structure put together into a
hierarchy. The structure may include classifier and document nodes.

46

3.8.3 ’retrieve’-type services

Retrieval services are special in that requests are not explicitly initiated by a user
from a form on a web page, but are called from actions in response to other things.
This means that their names are hard-coded into the Actions.DocumentContentRe-
trieve, DocumentStructureRetrieve and DocumentMetadataRetrieve are the stan-
dard names for retrieval services for content, structure, and metadata of documents.
Requests to each of these include a list of document identifiers. Because these gen-
erally refer to parts of documents, the elements are called<documentNode>. For
the content, that is all that is required. For the metadata retrieval service, the re-
quest also needs parameters specifying what metadata is required. For structure
retrieval services, requests need parameters specifying what structure or structural
info is required.

Some example requests and responses follow.
Give me the Title metadata for these documents:

<request lang="en" to="mgppdemo/DocumentMetadataRetrieve" type="process">
<paramList>

<param name="metadata" value="Title" />
</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"/>
<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12"/>
<documentNode nodeID="HASH010f073f22033181e206d3b7.1"/>
...

</documentNodeList>
</request>

<response from="mgppdemo/DocumentMetadataRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<metadataList>

<metadata name="Title">Putting snails in your second pen</metadata>
</metadataList>

</documentNode>
<documentNode nodeID="HASH010f073f22033181e206d3b7.2.12">
<metadataList>

<metadata name="Title">Now you must decide</metadata>
</metadataList>

</documentNode>
<documentNode nodeID="HASH010f073f22033181e206d3b7.1">
<metadataList>

<metadata name="Title">Introduction</metadata>
</metadataList>

</documentNode>
</documentNodeList>

</response>

One or more parameters specifying metadata may be included in a request.
Also, a metadata value ofall will retrieve all the metadata for each document.

47

Any browse-type service must also implement a metadata retrieval service to
provide metadata for the nodes in the classification hierarchy. The name of it is the
browse service name plusMetadataRetrieve. For example, the ClassifierBrowse
service described in the previous section should also have aClassifierBrowseMeta-
dataRetrieve service. The request and response format is exactly the same as for
the DocumentMetadataRetrieve service, except that<documentNode> elements are
replaced by<classifierNode> elements (and the corresponding list element is
also changed).

Give me the text (content) of this document:

<request lang="en" to="mgppdemo/DocumentContentRetrieve" type="process">
<paramList />
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2" />
</documentNodeList>

</request>

<response from="mgppdemo/DocumentContentRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<nodeContent><Section>
<P ALIGN="JUSTIFY"></P>
<P ALIGN="JUSTIFY">190. When the plants in
your second pen have grown big enough to provide food and
shelter, you can put in the snails.</P>

</nodeContent>
</documentNode>

</documentNodeList>
</response>

The content of a node is returned in a<nodeContent> element. In this case it
is escaped HTML.

Give me the ancestors and children of the specified node, along with the num-
ber of siblings it has:

<request lang="en" to="mgppdemo/DocumentStructureRetrieve" type="process">
<paramList>

<param name="structure" value="ancestors" />
<param name="structure" value="children" />
<param name="info" value="numSiblings" />

</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2" />
</documentNodeList>

</request>

<response from="mgppdemo/DocumentStructureRetrieve" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2">
<nodeStructureInfo>

<info name="numSiblings" value="2" />
</nodeStructureInfo>

48

<nodeStructure>
<documentNode nodeID="HASHac0a04dd14571c60d7fbfd"

docType=’hierarchy’ nodeType="root">
<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4"

docType=’hierarchy’ nodeType="interior">
<documentNode nodeID="HASHac0a04dd14571c60d7fbfd.4.2"

docType=’hierarchy’ nodeType="leaf" />
</documentNode>

</documentNode>
</nodeStructure>

</documentNode>
</documentNodeList>

</response>

Structure is returned inside a<nodeStructure> element, while structural info
is returned in a<nodeStructureInfo> element. Possible values for structure pa-
rameters are as for browse services:ancestors, parent, siblings, children,
descendants, entire. Possible values for info parameters arenumSiblings, siblingPosition,
numChildren.

3.8.4 ’process’-type services

Requests to process-type services are not requests for data—they request some
action to be carried out, for example, create a new collection, or import a collection.
The response is a status or an error message. The import and build commands may
take a long time to complete, so a response is sent back after asuccessful start to
the command. The status may be polled by the requester to see how the process is
going.

Process requests generally contain just a parameter list. Like for any service,
the parameters used by a process-type service can be obtained by a describe request
to that service.

Here are two example requests for process-services that arepart of the build
service cluster (hence the addresses all begin with ’build/’), followed by an exam-
ple response:

<request lang=’en’ type=’process’ to=’build/NewCollection’>
<paramList>

<param name=’creator’ value=’me@home.com’/>
<param name=’collName’ value=’the demo collection’/>
<param name=’collShortName’ value=’demo’/>

</paramlist>
</request>

<request lang=’en’ type=’process’ to=’build/ImportCollection’>
<paramList>

<param name=’collection’ value=’demo’/>
</paramlist>

</request>

<response from="build/ImportCollection">

49

<status code="2" pid="2">Starting process...</status>
</response>

The code attribute in the response specifies whether the command has been
successfully stated, whether its still going, etc (see Table 7 for a list of currently
used codes). The pid attribute specifies a process id number that can be used when
querying the status of this process. The content of the status element is (currently)
just the output from the process so far. Status messages, which were described
in Section 3.7, are used to find out how the process is going, and whether it has
finished or not.

3.8.5 ’applet’-type services

Applet-type services are those that process the data for an applet. A request consists
only of a list of parameters, and the response contains an<appletData> element
that contains the XML data to be returned to the applet. The format of this is
entirely specific to the applet—there is no set format to the applet data.

Here is an example request and response, used by the Phind applet:

<request type=’query’ to=’mgppdemo/PhindApplet’>
<paramList>
<param name=’pc’ value=’1’/>
<param name=’pptext’ value=’health’/>
<param name=’pfe’ value=’0’/>
<param name=’ple’ value=’10’/>
<param name=’pfd’ value=’0’/>
<param name=’pld’ value=’10’/>
<param name=’pfl’ value=’0’/>
<param name=’pll’ value=’10’/>

</paramList>
</request>

<response type=’query’ from=’mgppdemo/PhindApplet’>
<appletData>
<phindData df=’9’ ef=’46’ id=’933’ lf=’15’ tf=’296’>

<expansionList end=’10’ length=’46’ start=’0’>
<expansion df=’4’ id=’8880’ num=’0’ tf=’59’>

<suffix> CARE</suffix>
</expansion>
...

</expansionList>
<documentList end=’10’ length=’9’ start=’0’>
<document freq=’78’ hash=’HASH4632a8a51d33c47a75c559’ num=’0’>

<title>The Courier - N??159 - Sept- Oct 1996 Dossier Investing
in People Country Reports: Mali ; Western Samoa

</title>
</document>
...

</documentList>
<thesaurusList end=’10’ length=’15’ start=’0’>
<thesaurus df=’7’ id=’12387’ tf=’15’ type=’RT’>

50

<phrase>PUBLIC HEALTH</phrase>
</thesaurus>...

</thesaurusList>
</phindData>

</appletData>
</response>

3.8.6 ’enrich’-type services

Enrich services typically take some text of documents (inside <nodeContent>

tags) and returns the text marked up in some way. One example of this is the
GatePOSTag service: this identifies Dates, Locations, People and Organizations
in the text, and annotates the text with the labels. In the following example, the
request is for Location and Dates to be identified.

<request lang="en" to="GatePOSTag" type="process">
<paramList>

<param name="annotationType" value="Date,Location" />
</paramList>
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd">
<nodeContent>

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome 1986
P-69
ISBN 92-5-102397-2
FAO 1986

</nodeContent>
</documentNode>

</documentNodeList>
</request>

<response from="GatePOSTag" type="process">
<documentNodeList>

<documentNode nodeID="HASHac0a04dd14571c60d7fbfd">
<nodeContent>

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
<annotation type="Location">Rome</annotation>

<annotation type="Date">1986</annotation>
P-69
ISBN 92-5-102397-2
FAO <annotation type="Date">1986</annotation>

</nodeContent>
</documentNode>

</documentNodeList>
</response>

3.9 Page generation

A ’page’ is some XML or HTML (or other?) data returned in response to an ex-
ternal ’page’-type request. These requests originate fromoutside Greenstone , for

51

example from a servlet, or Java application, and are received by the Reception-
ist. As described below in Section 3.9.1, the requests are XML representations of
Greenstone URLs. One of the arguments is action (a). This tells the Receptionist
which Action module to pass the request to.

Action modules decode the rest of the arguments to determinewhat requests
need to be made to the system. One or more internal requests may be made to the
MessageRouter. A request for format information from the Collection/Service may
also be made. The resulting data is gathered together into a single XML response,
<page>, and returned to the Receptionist.

The page format is described in Section 3.9.2. The XML may be returned as is,
or may be modified by the Receptionist. The various Receptionists are described in
Section 3.9.3. The default receptionist used by a servlet transforms the XML into
HTML using XSL stylesheets. Section 3.9.4 looks at collection specific formatting,
in particular for HTML output. Sections 3.9.6 to 3.9.12 lookat the various actions
and what kind of data they gather.

3.9.1 ’page’-type requests and their arguments

These are requests for a ’page’ of data—for example, the homepage for a site; the
query page for a collection; the text of a document. They contain, in XML, a list
of arguments specifying what type of page is required. If theexternal context is
a servlet, the arguments represent the ’CGI’ arguments in a Greenstone URL. The
two main arguments area (action) andsa (subaction). All other arguments are
encoded as parameters.

Here are some examples of requests8:

<request type=’page’ action=’p’ subaction=’about’
lang=’fr’ output=’html’>

<paramList>
<param name=’c’ value=’demo’/>

</paramList>
</request>

<request type=’page’ action=’q’ lang=’en’ output=’html’>
<paramList>

<param name=’s’ value=’TextQuery’/>
<param name=’c’ value=’demo’/>
<param name=’rt’ value=’r’/>
<!-- the rest are the service specific params -->
<param name=’ca’ value=’0’/> <!-- casefold -->
<param name=’st’ value=’1’/> <!-- stem -->
<param name=’m’ value=’10’/> <!-- maxdocs -->
<param name=’q’ value=’snail’/> <!-- query string -->

</paramList>
</request>

8In a servlet context, these correspond to the argumentsa=p&sa=about&c=demo&l=fr, and
a=q&l=en&s=TextQuery&c=demo&rt=r&ca=0&st=1&m=10&q=snail.

52

Argument Meaning Typical values
a action a (applet), q (query), b (browse), p (page), pr (process)

s (system)
sa subaction home, about (page action)
c collection or demo, build

service cluster
s service name TextQuery, ImportCollection
rt request type d (display), r (request), s (status)
ro response only 0 or 1 - if set to one, the request is carried out

but no processing of the results is done
currently only used in process actions

o output type XML, HTML, WML
l language en, fr, zh ...
d document id HASHxxx
r resource id ???
pid process handle an integer identifying a particular process request

Table 8: Generic arguments that can appear in a Greenstone URL

There are some standard arguments used in Greenstone, and they are described
in Table 8. These are used by Receptionists and Actions. The GSParams class
specifies all the general basic arguments, and whether they should be saved or not
(Some arguments need to be saved during a session, and this needs to be imple-
mented outside Greenstone proper — currently we do this in the servlet, using
servlet session handling). The servlet has an init parameter params class which
specifies which params class to use: GSParams can be subclassed if necessary. The
Receptionist and Actions must not have conflicting argumentnames.

Other arguments are used dynamically and come from the Services. Service
arguments must always be saved during a session. Services may be created by dif-
ferent people, and may reside on a different site. There is noguarantee that there
is no conflict with argument names between services and actions. Therefore ser-
vice parameters are namespaced when they are put on the page,whereas interface
(receptionist and action) parameters have no namespace. The default namespace
is s1 (service1) — any parameters that are for the service will be prefixed by this.
For example, the case parameter for a search will be put in thepage as s1.case,
and the resulting argument in a search URL will be s1.case. When actions are de-
ciding which parameters need to be sent in a request to a service, they can use the
namespace information.

If there are two or more services combined on a page with a single submit
button, they will use namespaces s1, s2, s3 etc as needed. Thes (service) parameter
will end up with a list of services. For example,s=TextQuery,MusicQuery, and
the order of these determines the mapping order of the namespaces, i.e. s1 will
map to TextQuery, s2 to MusicQuery.

3.9.2 page format

The basic page format is:

53

<page lang=’en’>
<pageRequest/>
<pageResponse/>

</page>

* show configuration and describe whats its used for
There are two main elements in the page: pageRequest, pageResponse. The

pageRequest is the original request that came into the Receptionist—this is in-
cluded so that any parameters can be preset to their previousvalues, for example,
the query options on the query form. The pageResponse contains all the data that
has been gathered from the system by the action. The other twoelements con-
tain extra information needed by XSLT. Config contains run-time variables such
as the location of the gsdl home directory, the current site name, the name of the
executable that is running (e.g. library)—these are neededto allow the XSLT to
generate correct HTML URLs. Display contains some of the text strings needed in
the interface—these are separate from the XSLT to allow for internationalization.

The following subsections outline, for each action, what data is needed and
what requests are generated to send to the system.

Once the XML page has been put together, the page to return to the user is
created by transforming the XML using XSLT. The output is HTML at this stage,
but it will be possible to generate alternative outputs, such as XML, WML etc.
A set of XSLT files defines an ’interface’. Different users canchange the look
of their web pages by creating new XSLT files for a new ’interface’. Just as we
have a sites directory where different sites ’live’ (ie where their configuration file
and collections are located), we have an interfaces directory where the different
interfaces ’live’ (ie their transforms and images are located there). The default
XSLT files are located in interfaces/default/transforms. Collections, sites and other
interfaces can override these files by having their own copy of the appropriate files.
New interfaces have their own directory inside interfaces/. Sites and collections can
have a transform directory containing XSLT files. The order in which the XSLT
files are looked for is collection, site, current interface,default interface.9 [TODO:
describe a bit more?? currently only can get this locally]

3.9.3 Receptionists

The receptionist is the controlling module for the page generation part of Green-
stone . It has the job of loading up all the actions, and it knows about the message
router it and the actions are supposed to talk to. It routes messages received to the
appropriate action (page-type messages) or directly to themessage router (all other
types). Receptionists also do other things, for example, adding to the page received
back from the action any information that is common to all pages.

There are different ways of providing an interface to Greenstone , from web
based CGI style (using servlets) to Java GUI applications. These different inter-

9this currently breaks down for remote sites - need to rethinkit a bit.

54

faces require slightly different responses from a receptionist, so we provide several
standard types of receptionist.

Receptionist: This is the most basic receptionist. The pageit returns consists
of the original request, and the response from the action it was sent to. Meth-
ods preProcessRequest, and postProcessPage are called on the request and page,
respectively, but in this basic receptionist, they don’t doanything.

TransformingReceptionist: This extends Receptionist, and overwrites postPro-
cessPage to transform the page using XSLT. An XSLT is listed for each action in
the receptionists configuration file, and this is used to transform the page. First,
some display information, and configuration information isadded to the page.
Then it is transformed using the specified XSLT for the action, and returned.

WebReceptionist: The WebReceptionist extends TransformingReceptionist. It
doesn’t do much else except some argument conversion. To keep the URLs short,
parameters from the services are given shortnames, and these are used in the web
pages.

DefaultReceptionist: This extends WebReceptionist, and is the default one for
Greenstone3 servlets. Due to the page design, some extra information is needed
for each page: some metadata about the current collection. The receptionist sends
a describe request to the collection to get this, and appendsit to the page before
transformation using XSLT.

By default, the LibraryServlet uses DefaultReceptionist.However, there is a
servlet init-param calledreceptionist which can be set to make the servlet use a
different one.

3.9.4 Collection specific formatting

get format info, transform gsf-¿xsl. transform xml-¿html
configuration params are passed in to the transformation

3.9.5 CGI arguments

3.9.6 Page action

PageAction is responsible for displaying kinds of information pages, such as the
home page of the library, or the home page of a collection, or the help and pref-
erences pages. These pages are not associated with specific services like the other
page types. In general, the data comes from describe requests to various modules.
The different pages are requested using the subaction argument. For the ’home’
page, a ’describe’ request is sent to the MessageRouter—this returns a list of all
the collections, services, serviceClusters and sites known about. For each collec-
tion, its metadata is retrieved via a ’describe’ request. This metadata is added into
the previous result, which is then added into the page. For the ’about’ page, a
describe request is sent to the module that the about page is about: this may be a
collection or a service cluster. This returns a list of metadata and a list of services.

55

To get an external html page embedded into a greenstone collection, i.e. a two
frame page, with the top frame containing the collection header and navigation bar,
and the second frame containg the external page, use subaction html. A url would
look like a=p&sa=html&c=collname&url=externalurl

3.9.7 Query action

The basic URL isa=q&s=TextQuery&c=demo&rt=d/r. There are three query ser-
vices which have been implemented: TextQuery, FieldQuery,and AdvancedField-
Query. These are all handled in the same way by query action. For each page, the
service description is requested from the service of the current collection (via a de-
scribe request). This is currently done every time the querypage is displayed, but
should be cached. The description includes a list of the parameters available for
the query, such as case/stem, max num docs to return, etc. If the request type (rt)
parameter is set to d for display, the action only needs to display the form, and this
is the only request to the service. Otherwise, the submit button has been pressed,
and a query request to the TextQuery service is sent. This hasall the parameters
from the URL put into the parameter list. A list of document identifiers is returned.
A followup query is sent to the MetadataRetrieve service of the collection: the
content includes the list of documents, with a request for some of their metadata.
Which metadata to retrieve is determined by looking throughthe XSLT that will be
used to transform the page. The service description and query result are combined
into a page of XML, which is returned to the Receptionist.

3.9.8 Applet action

There are two types of request to the applet action:a=a & rt=d anda=a & rt=r.
The valuert=d means “display the applet.” Adescribe request is sent to the
service, which returns the<applet> HTML element. The transformation file
applet.xsl embeds this into the page, and the servlet returns the HTML.

The valuert=r signals a request from the applet. A process request containing
all the parameters is sent to the applet service. The result contains an appletData
element, which contains a single element - this element is returned directly to the
applet, in XML. No transformation is done. Because the AppletAction doesn’t
know or care anything about the applet data, it can work with any applet-service
pair.

Note that the applet HTML may need to know the name of thelibrary pro-
gram. However, that name is chosen by the person who installed the software and
will not necessarily be “library”. To get around this, the applet can put a parameter
called “library” into the applet data with a null value:

<PARAM NAME=’library’ VALUE=’’/>

When the AppletAction encounters this parameter it insertsthe name of the current
library servlet as its value.

56

3.9.9 Document action

DocumentAction is responsible for displaying a document tothe user. The display
might involve some metadata and/or text for a document or part of a document. For
hierarchical documents, a table of contents may be shown, while for paged docu-
ments (those with a single linear list of sections), next andprevious page buttons
may be shown. These different display types require different information about
the document. Depending on the arguments, DocumentAction will send requests
to several services: DocumentMetadataRetrieve, DocumentStructureRetrieve and
DocumentContentRetrieve.

A basic display, for example, Title and text, involves a metadata request to
get the Title, and a content request to get the text. Hierarchical table of contents
display requires a structure request. If the entire contents is to be displayed, the
parameterstructure=entirewould be sent in the request. Otherwise, parameters
structure=ancestors,structure=childrenand possiblystructure=siblings
may be used, depending in the position of the current node in the document. These
return a hierarchical structure of nodes, containing ancestor nodes, child nodes and
sibling nodes, respectively. For paged display, the structure is not actually needed.
A structure request is still sent, but this time it requests some information, rather
the structure itself. The information requested includes the number of siblings and
the current position of the current node, or the number of children (if the current
node is the root of the document).

Metadata may be requested for the current node, or for any nodes in the struc-
ture, and content also. The metadata and content are added into the appropriate
nodes in the structure hierarchy, and this is returned as thepage data.

3.9.10 XML Document action

XMLDocumentAction is a little different to the standard DocumentAction. It op-
erates in two modes,text andtoc. In text mode, it will retrieve the content of the
current document node using a DocumentContentRetrieve request. Intoc mode, it
retrieves the entire table of contents for the document using a DocumentStructur-
eRetrieve request. Either mode may also retrieve metadata for the current section
or each section in the table of contents.

3.9.11 GS2Browse action

GS2BrowseAction is for displaying Greenstone2 style classifiers.

3.9.12 System action

SystemAction allows for manual reconfiguration of various components at run-
time. There is no interactive web-page displaying the options, it merely turns a
set of CGI arguments into an XML system request. The responsefrom a system
request is a message which is displayed to the user.

57

Table 9: Configure CGI arguments
arg description
a=s system action
sa=c|a|d type of system request: c (configure), a (add/activate),

d (delete/deactivate)
c=demo the request will go to this collection/servicecluster

instead of the message router
ss=collectionList subset for configure: only reconfigure this part.

For the MessageRouter, can be serviceClusterList, serviceList,
collectionList, siteList.
For a collection/cluster, can be metadataList or serviceList.

sn=demo
st=collection

3.10 Other code information

Greenstone has a set of Utility classes, which are briefly described in Table 10.

58

Table 10: The utility classes in org.greenstone.gsdl3.util
Utility class Description
CollectionClassLoader ClassLoader that knows about a collection’s resource directory
DBInfo Class to hold info from GDBM database entry
Dictionary wrapper around a Resource Bundle, providing strings with parameters
GDBMWrapper Wrapper for GDBM database. Uses JavaGDBM
GSConstants holds some constants used for servlet arguments and configuration variables
GSEntityResolver an EntityResolver which can be used to findresources such as DTDs
GSFile class to create all Greenstone file paths e.g. used to locate configuration

files, XSLT files and collection data.
GSHTML provides convenience methods for dealing with HTML,e.g. making strings

HTML safe
GSParams contains names and default values for interface parameters
GS2Params a subclass of GSParams which holds default service parameters too, neces-

sary for the gs2 style interface.
GSPath used to create, examine and modify message address paths
GSStatus some static codes for status messages
GSXML lots of methods for extracting information out of Greenstone XML, and cre-

ating some common types of elements. Also has static Stringsfor element
and attribute names used by Greenstone .

GSXSLT some manipulation functions for Greenstone XSLT
GlobalProperties Holds the global properties (from global.properties)
MacroResolver Used with replace elements in collection configuration files, replaces a

macro or string with another string, metadata or text from a dictionary
GS2MacroResolver MacroResolver for GS2 collections, thatuses the GDBM database
Misc miscellaneous functions
MyNodeList A simple implementation of an XML NodeList
OID class to handle Greenstone (2) OIDs
Processing Runs an external process and prints the output from the process
SQLQuery contains a connection to a SQL database, along withsome methods for ac-

cessing the data, such as converting MG numbers to and from Greenstone
OIDs.

XMLConverter provides methods to create new Documents, parse Strings or Files into Doc-
uments, and convert Nodes to Strings

XMLTransformer methods to transform XML using XSLT
XSLTUtil contains static methods to be called from within XSLT

4 Developing Greenstone3 : Adding new features

[TODO: finish this section]

4.1 Creating and using new services

There are three parts to adding new services to Greenstone3:defining the new
service, specifying that it should be loaded, and using it. If you are talking to
Greenstone using the SOAP interface, then the firsttwo partsare all that need to
be done. If you are using the Greenstone servlet interface, then you may need to
do work for the third part, depending on what kind of new service it is. If you are
adding a service of a type that is already present, for example, a new query service,
then the query action can just use your new service as is (assuming it is set up in the

59

same way as the standard query services). However, if it is a new type of service
that the interface and actions don’t know about, you willl need to add a new action
or modify an existing one so that your service is actually used.

4.1.1 Creating the service

You will need to write a new Java class which inherits fromorg.greenstone.gsdl3.service.ServiceRack
(or a subclass of this). The class will need to implement at least theconfigure,
process<ServiceName>andgetServiceDescriptionmethods. There is a dummy
class calledMyNewServicesTemplate.java in greenstone3/resources/javawhich
describes these methods and what needs to be done.

ServiceRack.java handles the mainprocess method. If the request type is
’describe’, then it will send back a copy of shortserviceinfo, which contains a list
of services. If there request type is describe, but for a particular service, then it will
call getServiceDescroption for that service. For a format request, it will send
any format element found in formatinfo map for that service. For a processing
request to a service, then theprocess<ServiceName> method will be called.

Once the class is written, it needs to be compiled up and either included in one
of the existing jar files, or added in as a jar file togreenstone3/web/WEB-INF/lib
or a class file togreenstone3/web/WEB-INF/classes.

4.1.2 Loading the service

To have the library load in your new service, it needs to be specified in a configura-
tion file somewhere. For a collection service, add a new<serviceRack> element
to the collection’sbuildConfig.xml file. This element should contain any infor-
mation that the class needs to configure its service(s). For asite-wide service,
add the<serviceRack> element to the site’ssiteConfig.xml file, either in the
serviceRackList or as part of aserviceCluster.

4.1.3 Using the service

If you are using the SOAP web service, then you can send an XML request directly
to the service. The ’address’ of the request will be the service name if it is a site-
wide service, cluster-name/service-name if it is site-wide but belonging to a cluster,
or collection-name/service-name if it belongs to a collection. You will need to
know the format of the XML request and response that the service expects and
returns.

If you want to access your new service through the current servlet interface that
uses actions, then whether you need to do more work or not depends on whatkind of
service you have implemented. If you have written a new queryor browse service,
for example, that has teh same request and response format asthe existing services,
then you don’t need to do anything else. Your collection can just use the new query
service straight away. If the service is of an existing type,but needs soemthing

60

different in the request/response format, then you may needto modify an existing
action to supply or use the new information. If the service isof a completely new
type, then you will probably need a new action to talk to the service and display
the results.

4.2 creating new actions/pages

4.3 new interfaces

It is easy to create new interfaces to Greenstone3. Here we are talking about inter-
faces other than those to display in typical browser.

Handheld devices: Use the standard servlet setup, but with adifferent set of
XSLT files to format the pages for small screens, or use WML.

Java GUI Interface: There are couple of alternatives. Depending on what you
want to display in the GUI, you could talk to either a Receptionist or a Message-
Router. The library classes can be set up and compiled into the GUI program.
Talking to a Receptionist will give you access to pages of XML. It is likely that
the standard Receptionist class would be used - this doesn’ttransform the data to
HTML. Queries such as “give me the home page of a collection” and “do the fol-
lowing search” can be issued. All the data needed for the result view is returned.
Queries are quite simple, but are limited to what kinds of Actions are available in
the library. Talking to a MessageRouter requires a bit more effort on the part of the
GUI program, but results in greater flexibility. The kinds ofqueries that can be is-
sued are individual units of action, such as “describe yourself”, “search”, “retrieve
the content for this document”. More than one request may need to be made for
a particular feature of the GUI. However you can ask for any combination of data
available in the system, you are not relying on Actions. Whatyou will implement
though, may be a lot like the Action code in terms of request sequences.

Interfaces in other programming languages: Because the communication is
all XML based, other interfaces can talk to the Java library if a communication
protocol is set up. This could be done using SOAP for example.Like for Java
GUI interfaces, the program could talk to a Receptionist or to a MessageRouter.
e.g. Java interface. where you can interface to. MR vs Receptionist. different
receptionists. e.g., handheld - using servlet, transforming recpt, but new set of
XSLT Java program other program - talk to recpt but just get back XML data for
pages. Java gui - just talk to MR, do all processing itself.

Remote interfaces: remote interfaces can be set up in the same way as above,
using a communication protocol between the interface, and the library program.

4.4 New types of collections

The standard type of collection is built with the Greenstone2 Perl collection build-
ing system. There are many options to this, but it is conceivable that these options
don’t meet the needs of all collection builders. Greenstone3 has an ability to use
any type of collection you can come up with, assuming some Java code is provided.

61

There are four levels of customization that may be needed with new collections:
service, collection, interface XSLT, and action levels. Wewill use the example
collections that come with Greenstone to describe these different levels.

Firstly, new service classes need to be written to provide the functionality to
search/browse/whatever the collection. If the services have similar interfaces and
functionality to the standard services, this may be all thatis needed. For example,
MGPP collections were the first to be served in Greenstone3 . When we came
to do MG collections, all we had to do was write some new service classes that
interacted with MG instead of MGPP. Because these collections used the same
type of services, this was all we had to do. The format of the configuration files
was similar, they just specified MG serviceRack classes rather than MGPP ones.

The XML Sample Texts (gberg) collection, however, was done quite differently
to the standard collections. New services were provided to search the database
(built with Lucene) and to provide the documents and parts ofdocuments (using
XSLT to transform the raw XML files). The collectionConfig filehad some extra
information in it: a list of the documents in the collection along with their Titles.
Because the standard collection class has no notion of document lists, a new class
was created (org.greenstone.gsdl3.collection.XMLCollection). This class is basi-
cally the same as a standard collection class except that it looks for and stores in
memory the documentList from the collectionConfig file.

To tell Greenstone to load up a different type of collection class, we use an-
other configuration file:etc/collectionInit.xml. This specifies the name of the
collection class to use. Currently, this is all that is specified in that file, but you
may want to add parameters for the class etc.

<collectionInit class="XMLCollection"/>

The display for the collection is also quite different. The home page for the
collection displays the list of documents. To achieve this,the describe response
from the collection had to include the list, and a new XSLT waswritten for the
collection that displayed this. Collection XSLT should be put in the transform
directory of the collection10.

Document display is significantly different to standard Greenstone . There are
two modes of display: table of contents mode, and content mode. Clicking on a
document link from the collection home page takes the user tothe table of contents
for the collection. Clicking on one of the sections in the table of contents takes
them to a display of that section. To facilitate this, not only do we need new XSLT
files , we also needed a new action. XMLDocumentAction was created, that used
two subactions, toc and text, for the different modes of display.

The Receptionist was told about this new action by the addition of the following
element to the interfaceConfig.xml file:

<action name=’xd’ class=’XMLDocumentAction’>
<subaction name=’toc’ xslt=’document-toc.xsl’/>

10These are currently only used when running Greenstone in a non-distributed fashion, but it will
be added in properly at some stage

62

<subaction name=’text’ xslt=’document-content.xsl’/>
</action>

XSLT files are linked to subactions rather than the action as awhole. The
collection supplies the two XSLT files written appropriately for the data it contains.

All links that link to the documents have to be changed to use the xd action
rather than the standard d action. These include the links from the home page, and
the links from query results.

Querying of the collection is almost the same as usual. The query service pro-
vides a list of parameters, does the query and then sends backa list of document
identifiers. The standard query action was fine for this collection. The change oc-
curs in the way that the results are displayed—this is accomplished using a format
statement supplied in the collectionConfig file inside the search node.

<search>
<format>
<gsf:template match="documentNode">

<xsl:param name="collName"/>
<xsl:param name="serviceName"/>
<td>

<a href="{$library_name}?a=xd&sa=text&c={$collName}&
amp;d={@nodeID}&p.a=q&p.s={$serviceName}">
<xsl:choose>
<xsl:when test="metadataList/metadata[@name=’Title’]">

<gsf:metadata name="Title"/>
</xsl:when>
<xsl:otherwise>(section)</xsl:otherwise>

</xsl:choose>

 from <a href="{$library_name}?a=xd&sa=toc&
c={$collName}&d={@nodeID}.rt&p.a=q&p.s={$serviceName}">

<gsf:metadata name="Title" select="root"/>
</td>

</gsf:template>
</format>

</search>

Instead of displaying an icon and the Title, it displays the Title of the section
and the title of the document. Both of these are linked to the document: the section
title to the content of that section, the document title to the table of contents for
the document. Because these require non-standard arguments to the library, these
parts of the template are written in XSLT not Greenstone format language. As is
shown here it is perfectly feasible to write a format statement that includes XSLT
mixed in with Greenstone format elements.

The document display uses CSS to format the output—these arekept in the
collection and specified in the collections XSLT files. The documents also specify
DTD files. Due to the way we read in the XML files, Tomcat sometimes has
trouble locating the DTDs. One option is to make all the linksabsolute links to
files in the collection folder, the other option is to put themin Greenstone ’s DTD
folder $GSDL3SRCHOME/resources/dtd.

63

4.5 The gs2 Interface

The library seen athttp://www.greenstone.org/greenstone3/nzdl is like a
mirror to http://www.nzdl.org—it aims to present the same collections, in the
same way but using Greenstone3 instead of Greenstone2 . It uses a new site (nzdl)
with a new interface (nzdl) which is based on the gs2 interface. The web.xml file
had a new servlet entry in it to specify the combination of nzdl site and nzdl inter-
face.

The site was created by making a directory called nzdl in the sites folder. A
siteConfig file was created. Because it is running on Linux, wewere able to link to
all the collections in the old Greenstone installation. Theconvertcoll from gs2.pl
script was run over all the collections to produce the new XMLconfiguration files.

The gs2 interface was created to be used by this site (and is now a standard
part of Greenstone). In many cases, creating a new interfacejust requires the new
images and XSLT to be added to the new directory(see Sections1.4 and 2.5). This
gs2 interface required a bit more customization.

The standard Greenstone3 navigation bar lists all the services available for the
collection. In Greenstone2 , the navigation bar provides the search option, and
the different classifiers. This is not service specific, but hard coded to the search
and classifiers. The XSLT that produces the navigation bar needed to be altered to
produce this. The standard receptionist (DefaultReceptionist) gathers a little bit of
extra information for each page of XML before transforming it: this is the list of
services for the collection and their display information,allowing the services to
be listed along the navigation bar. This is information thatis needed by every page
(except for the library home page) and therefore is obtainedby the receptionist
instead of by each action. The nzdl interface uses the classifier list that comes in
the ClassifierBrowse service description to display teh list of classifiers.

The nzdl interface extends the gs2 interface to provide a different looking home
page and an extra static ’gsdl’ page.

64

5 Distributed Greenstone

Greenstone is designed to run in a distributed fashion. One Greenstone installation
can talk to several sites on different computers. This requires some sort of com-
munication protocol. Any protocol can be used, currently wehave a simple SOAP
protocol.

more explanation..

ServiceCluster

Service

Collection

Collection

Collection

MessageRouter

Collection Collection

MessageRouter

SOAP
Server

SOAP
Server

Library
Servlet

Receptionist

Action Action

Action

MessageRouter

SOAP
Communicator

SOAP
Communicator

1

2

3

Service

Service

Service

Service

Service

Service

Service

Service

Service
Service

Figure 10: A distributed digital library configuration running over several servers

We have used Apache Axis SOAP implementation. This is run as aservlet
in Tomcat. Axis is set up during installation of Greenstone.For more details
about SOAP in Greenstone, see Appendix C. Debugging soap is described in Ap-
pendix C.1.

5.1 Serving a site using soap

A web service for localsite comes with Greenstone. However,it is not deployed
by default. To deploy it, run runant deploy-localsite. If you want to set up
web services for other sites, runant soap-deploy-site. This will prompt you
for the sitename (its directory name), and a siteuri - a unique identifier for the web
service. Tomcat needs to be running for this to work, and you need to have installed
the Greenstonesource code.

The ant target deploys the service for the site specified. A resource file (<sitename>.wsdd)
is created which is used to specify the service. It can be found in$GSDL3HOME/resources/soap,
and is generated fromsite.wsdd.template.

The address of the new SOAP service will be tomcatserver-address/greenstone3/services/sitename,
for example, www.greenstone.org/greenstone3/services/localsite.

65

5.2 Connecting to a site web service

There are two ways to use a remote site. First, if you have a local site running, then
the site can also connect to other remote sites. In the siteConfig.xml file, you need
to add a site element into the siteList element.

For example, to get siteA to talk to siteB, you need to deploy aSOAP server on
siteB, then add a<site> element to the<siteList> of siteA’s siteConfig.xml

file (in $GSDL3HOME/sites/siteA/siteConfig.xml).
In the<siteList> element, add the following (substituting the chosen site uri

for siteBuri):

<site name="siteBuri"
address="http://localhost:8080/greenstone3/services/siteBuri"
type="soap"/>

(Note that localhost and 8080 should be changed to the valuesyou entered
when installing Greenstone3. Localhost will only work for servers on the smae
machine.).

If you have changed the siteConfig.xml file for a site that is running, it will
need to be reconfigured. Either restart Tomcat, or reconfigure through a URL: e.g.
http://localhost:8080/greenstone3/library?a=s&sa=c. Several sites can be
connected to in this manner.

The second option is if you have a receptionist set up on a machine where
you have no site, and you only want to connect to a single remote site. Instead of
using sitename in the servlet initialisation parameters (in $GSDL3HOME/WEB-
INF/web.xml), you can specify remotesite name, remotesite type and remotesite address.
A communicator object will be set up instead of a MessageRouter and the recep-
tionist will talk to the communicator.

66

A Using Greenstone3 from CVS

Greenstone3 is also available via CVS. You can download the latest version of the
code. This is not guaranteed to be stable, in fact it is likelyto be unstable. The
advantage of using CVS is that you can update the code and get the latest fixes.

Note that you will need the Java 2 SDK, version 1.4.0 or higher, and Ant
(Apache’s Java based build tool, http://ant.apache.org) installed.

To check out the Greenstone code, use:

cvs -d :pserver:cvs_anon@cvs.scms.waikato.ac.nz:2402/usr/local/
global-cvs/gsdl-src co -P greenstone3

If you need it, the password for anonymous CVS access isanonymous. Note
that some older versions of CVS have trouble accessing this repository due to the
port number being present. We are using version 1.11.1p1.

Greenstone is built and installed using Ant (Apache’s Java based build tool,
http://ant.apache.org). You will need a Java Development Environment (1.4 or
higher), and Ant installed to use Greenstone. You can download Ant from
http://ant.apache.org/bindownload.cgi. Make sure that the environment vari-
ables JAVAHOME and ANTHOME are set.

In thegreenstone3 directory, you can run’ant’ which will give you a help
message. Running’ant -projecthelp’ gives a list of the targets that you can run
— these do various things like compile the source code, startup the server etc.

TheREADME.txt file has up-to-date instructions for installing from CVS. Briefly,
for a first time install, run’ant prepare install’.

The filebuild.properties contains various parameters that can be set by the
user. Please check these settings before running the installation process. The in-
stall process will ask you if you accept the properties before starting. For a non-
interactive version of the install, run’ant -Dproperties.accepted=yes install’

To log the output in build.log, run’ant -Dproperties.accepted=yes -logfile

build.log install’

Compilation includes Java and C/C++. On Windows, you will need to have Vi-
sual Studio or equivalent installed. Please check thecompile.windows.c++.setup

property in build.properties — make sure it is set to the setup script of Visual Stu-
dio.

Note:gs3-setup sets the environment variablesGSDL3HOME, GSDL3SRCHOME,

CLASSPATH, PATH, JAVA HOME and needs to be done in a shell before doing col-
lection building etc.

To run the library, use thegs3-server.sh/bat shell scripts.

67

B Tomcat

Tomcat is a servlet container, and Greenstone3 runs as a servlet inside it.
The file$GSDL3SRCHOME/packages/tomcat/conf/server.xml is the Tomcat

configuration file. A context for Greenstone3 is given by the file
$GSDL3SRCHOME/packages/tomcat/conf/Catalina/localhost/greenstone3.xml.
This tells Tomcat where to find the web.xml file, and what URL (/greenstone3)
to give it. Anything inside the context directory is accessible via Tomcat11. For
example, the index.html file that lives in$GSDL3HOME can be accessed through the
URL localhost:8080/greenstone3/index.html. The gs2mgdemo collection’s
images can be accessed through
localhost:8080/greenstone3/sites/localsite/collect/gs2mgdemo/images/.

Greenstone sets up Tomcat to run on port 8080 by default. To change this, you
can edit the tomcat.port property in build.properties. If you do this before installing
Greenstone, then running ’ant install’ will use the new portnumber. If you want
to change it later on, shutdown tomcat, run ’ant configure’, then when you restart
tomcat it will use the new port.

Note: Tomcat must be shutdown and restarted any time you makechanges in
the following for those changes to take effect:

• $GSDL3HOME/WEB-INF/web.xml

• $GSDL3SRCHOME/packages/tomcat/conf/server.xml

• any classes or jar files used by the servlets

On startup, the servlet loads in its collections and services. If the site or col-
lection configuration files are changed, these changes will not take effect until the
site/collection is reloaded. This can be done through the reconfiguration messages
(see Section 1.7), or by restarting Tomcat.

We have disabled following symlinks for the greenstone servlet. To enable it,
edit$GSDL3SRCHOME/packages/tomcat/conf/Catalina/localhost/greenstone3.xml
and set ’allowLinking’ to true.

By default, Tomcat allows directory listings. To disable this, change the ’list-
ings’ parameter to false in the default servlet definition, in Tomcat’s web.xml file
($GSDL3SRCHOME/packages/tomcat/conf/web.xml):

We have set the greenstone context to be reloadable. This means that if a
class or resource file in web/WEB-INF/lib or web/WEB-INF/classes changes, the
servlet will be reloaded. This is useful for development, but should be turned off
for production mode (set the ’reloadable’ attribute to false).

Tomcat uses a Manager to handle HTTP session information. This may be
stored between restarts if possible. To use a persistent session handling manager,
uncomment the<Manager> element in
$GSDL3SRCHOME/packages/tomcat/conf/server.xml. For the default manager,
session information is stored in the work directory:

11can we use .htaccess files to restrict access??

68

$GSDL3SRCHOME/packages/tomcat/work/Catalina/localhost/greenstone3/SESSIONS.ser.
Delete this file to clear the cached session info. Note that Tomcat needs to be shut-
down to delete this file.

B.1 Proxying Tomcat with apache

Instead of incorporating servlet support into your existing web server, an easy alter-
native is to proxy Tomcat. Thehttp://www.greenstone.org/greenstone3 site
uses apache to proxy Tomcat. ProxyPass and ProxyPassReverse directives need to
be added to the Virtualhost description for the www.greenstone.org server.

<VirtualHost xx.xx.xx.xx>

ServerName www.greenstone.org

...

ProxyPass /greenstone3 http://puka.cs.waikato.ac.nz:8080/greenstone3

ProxyPassReverse /greenstone3 http://puka.cs.waikato.ac.nz:8080/greenstone3

</VirtualHost>

In our example, the Greenstone3 servlet can be accessed at
http://www.greenstone.org/greenstone3/library, instead of at
http://puka.cs.waikato.ac.nz:8080/greenstone3/library,which is not pub-
lically accessible.

B.2 Running Tomcat behind a proxy

Almost everything works fine when Tomcat is running behind a proxy. The only
time this causes trouble is if the servlet itself needs to make external HTTP connec-
tions. We do this in the infomine demo collection for example. One of the service
classes sends HTTP requests to the infomine database at riverside. Since this is
going through the proxy, a username and password is needed. It is not sufficient
to prompt the user for a password because they are unlikely tohave a password
for the particular proxy that Tomcat is using. What we have done at present is to
put a proxy element in the siteConfig.xml file. Here you have toenter a suitable
username and password for the proxy server. Unfortunately these are entered in
plain text. And the file is viewable via the servlet. So we needa better solution.

69

C SOAP

Greenstone uses the Apache Axis SOAP implementation for distributed commu-
nications. Axis runs as a servlet inside Tomcat, and SOAP webservices can be
deployed by this Axis servlet. The Greenstone installationprocess sets up Axis for
Tomcat, but does not deploy any services.

To deploy the SOAP service for localsite, runant deploy-localsite.
To deploy a SOAP service for other sites, runant soap-deploy-site

This will prompt you for the sitename (the site’s directory name), and a unique
URI for the site. It creates a new SOAPServer class for the site
($GSDL3SRCHOME/src/java/org/greenstone/gsdl3/SOAPServer<sitename>.java),
creates a resource file for deployment ($GSDL3SRCHOME/resources/soap/<sitename>.wsdd),
and then tries to deploy the service.

Information about deployed services is maintained betweenTomcat sessions—
you only need to deploy something once. To undeploy a site, useant soap-undeploy-site.

The axis services can be accessed atlocalhost:8080/greenstone3/index.jsp.

C.1 Debugging SOAP

If you need to debug the SOAP stuff for some reason, or just want to look at the
SOAP messages that are being passed back and forth, you can use the TCP monitor.
This intercepts messages coming in to one port, displays them, and passes them to
another port. To run it, type:

java -cp $GSDL3HOME/WEB-INF/lib/axis.jar

org.apache.axis.utils.tcpmon

The listen port is the port that you want the monitor to be listening on. It should
’act as’ a Listener, with target hostname 127.0.0.1 (localhost), and target port the
port that Tomcat is running on (8080). You need to modify the address used to
talk to the SOAP service. For example, if you want to monitor traffic between
the gateway site and the localsite SOAP server, you will needto edit gateway’s
siteConfig.xml file and change the port number (in the site element) to whatever
you have chosen as the listen port.

For example, in the Admin panel of TCPMonitor the Target Hostname might
be 127.0.0.1, and the Target Port # 8080. Set the Listen Port #to be a different port,
such as 8070 and click Add. This produces a new tab panel whereyou can see the
messages arriving at port 8070 before being forwarded to port 8080. You then need
to set your test request from your SOAP application to arriveat port 8070 and you
will see copies of the messages in the new tab panel.

70

D Tidying up the formatting for imported Greenstone2
collections

D.1 Format statements: Greenstone2 vs Greenstone3

The following table shows the Greenstone2 format elements,and their equivalents
in Greenstone3

Table 11: Greenstone3 equivalents of Greenstone2 format statements
Greenstone2 Greenstone3
[Text] <gsf:text/>
[num] <gsf:metadata name=’docnum’/>
[link][/link] <gsf:link></gsf:link> or

<gsf:link type=’document’></gsf:link>
[srclink][/srclink] <gsf:link type=’source’></gsf:link>
[icon] <gsf:icon/> or

<gsf:icon type=’document’/>
[srcicon] <gsf:icon type=’source’/>
[Title] (metadata) <gsf:metadata name=’Title’/> or

<gsf:metadata name=’Title’ select=’current’/>
[parent:Title] <gsf:metadata name=’Title’ select=’parent’ />
[parent(All):Title] <gsf:metadata name=’Title’ select=’ancestors’/>
[parent(Top):Title] <gsf:metadata name=’Title’ select=’root’ />
[parent(All’: ’):Title] <gsf:metadata name=’Title’ select=’ancestors’

separator=’: ’ />
[sibling(All’: ’):Title] <gsf:metadata name=’Title’ multiple=’true’

separator=’: ’ />
{Or}{[dc.Title], <gsf:choose-metadata>
[dls.Title], [Title]} <gsf:metadata name=’dc.Title’/>

<gsf:metadata name=’dls.Title’/>
<gsf:metadata name=’Title’/>

</gsf:choose-metadata>
{If}{[parent:Title], <gsf:choose-metadata>
[parent:Title], [Title]} <gsf:metadata name=’Title’ select=’parent’/>

<gsf:metadata name=’Title’/>
</gsf:choose-metadata>

{If}{[Subject], <gsf:switch>
<td>[Subject]</td>} <gsf:metadata name=’Subject’/>

<gsf:when test=’exists’>
<td><gsf:metadata name=’Subject’/></td>
</gsf:when></gsf:switch>

D.2 Cleaning up macros

Here we show some of the replace items that have been used for Greenstone2
collections.

Getting rid of silly backslashes:

<replace scope=’text’ macro="\\?\\\(" text="\("/>

Macro resolving using resource bundles and metadata:

71

<replace scope=’metadata’ macro="_magazines_" bundle="NZDLMacros"
key="Magazines"/>

<replace scope=’all’ macro=’_thisOID_’ metadata=’archivedir’/>
<replace macro="_httpcollimg_"

text="sites/localsite/collect/folktale/index/assoc"/>

Fixing up broken external links:

<replace macro="_httpextlink_&rl=1&href="
text="?a=d&c=folktale&s0.ext=1&d="/>

<replace macro="_httpextlink_&rl=0&href="
text="?a=p&sa=html&c=folktale&url="/>

These two examples show how to deal with Greenstone2’s external link macros.
The first one is for a ’relative’ external link. In this case, the links are like URL’s
but they actually refer to Greenstone internal documents. So the Greenstone3 link
is to the document, but with parameter s0.ext signifying that the d argument will
need translating before retrieving the content. The secondexample is a truly ex-
ternal link. This is translated into a HTML type page action,where the URL is
presented as a frame along with the collection header in a separate frame.

Sometimes we need to add in macros to be resolved in a second step:

<replace macro="_iconpdf_" scope="metadata"
text=""/>

<replace macro="_texticonpdf_" scope="metadata" bundle="interface_gs2"
key="texticonpdf"/>

72

